Skip to main content

Perturbative Construction of Models of Algebraic Quantum Field Theory

  • Chapter
  • First Online:
Advances in Algebraic Quantum Field Theory

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

The construction of models of algebraic quantum field theory by renormalized perturbation theory is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is another natural way to introduce a smooth manifold structure on \(\mathcal {E}_S\). We define the atlas where charts are given by maps \(\varphi +\mathcal {D}\rightarrow \mathcal {E}_{S,sc}\), \(\varphi +\overrightarrow{\varphi }\mapsto \varDelta _S\overrightarrow{\varphi }\), with \(\varphi \in \mathcal {E}_S\), where \(\mathcal {E}_{S,sc}\) is the space of solutions with compactly supported Cauchy data. We have \(\varDelta _S:\mathcal {D}\rightarrow \mathcal {E}_{S,sc}\) and we equip \(\mathcal {E}_{S,sc}\) with the final topology with respect to all curves of the form \(\lambda \mapsto \varphi + \varDelta _S(\overrightarrow{\varphi }(\lambda ))\), where \(\lambda \mapsto \overrightarrow{\varphi }(\lambda )\) is a smooth curve in \(\mathcal {D}\). This gives \(\mathcal {E}_{S}\) the structure of an affine manifold in the sense of convenient calculus [35].

  2. 2.

    Since \(\varDelta _S\) is a bi-distribution rather than a smooth function, the map \(\varphi \mapsto \varDelta _S\) doesn’t induce an actual bi-vector field on \(\mathcal {E}\), but belongs to a suitable completion of \(\varGamma (\varLambda ^2T\mathcal {E})\).

References

  1. Araki, H., Shiraishi, M.: On quasifree states of the canonical commutation relations (I). Publ. Res. Inst. Math. Sci. 7, 105–120 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arms, J.M., Marsden, J.E., Moncrief, V.: The structure of the space of solutions of Einstein’s equations II: several Killing fields and the Einstein-Yang-Mills equations. Ann. Phys. 144(1), 81–106 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Fredenhagen, K., Bär, C.H.: Quantum field theory on curved spacetimes, Lecture Notes in Physics, vol. 786. Springer, Berlin (2009)

    Google Scholar 

  4. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys. 111, 61–110 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. II. Physical applications. Ann. Phys. 111, 111–151 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bogoliubov, N.N., Parasiuk, O.S.: Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Math. 97, 227–266 (1957)

    Article  MathSciNet  Google Scholar 

  7. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. Interscience Publishers (1959)

    Google Scholar 

  8. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. arXiv:1306.1058 [math-ph]

  11. Chilian, B., Fredenhagen, K.: The Time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Crnkovic, C, Witten, E.: Covariant description of canonical formalism in geometrical theories. In: Three hundred years of gravitation, pp. 676–684 (1987)

    Google Scholar 

  13. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  14. Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. arXiv:1502.02705 [math-ph]

  15. Duetsch, M., Fredenhagen, K.: A local (perturbative) construction of observables in gauge theories: the example of QED. Commun. Math. Phys. 203, 71 (1999)

    Article  ADS  MATH  Google Scholar 

  16. Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a proof of the action ward identity. Rev. Math. Phys. 16(10), 1291–1348 (2004). hep-th/0403213]

    Article  MathSciNet  MATH  Google Scholar 

  17. Duetsch, M., Fredenhagen, K., Keller, K.J., Rejzner, K.: Dimensional regularization in position space, and a forest formula for Epstein-Glaser renormalization. J. Math. Phys. 55, 122303 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  18. Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Poincare Phys. Theor. A 19, 211 (1973)

    MathSciNet  Google Scholar 

  19. Fredenhagen, K, Lindner, F.: Construction of KMS states in perturbative QFT and renormalized Hamiltonian dynamics. Commun. Math. Phys. 332(3), 895 (2014)

    Google Scholar 

  20. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Fredenhagen, K., Rejzner, K.: QFT on curved spacetimes: axiomatic framework and examples. arXiv:1412.5125 [math-ph]

  22. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, ii. Ann. Phys. 136, 243–272 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  23. Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405–460

    Google Scholar 

  24. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7(1)

    Google Scholar 

  25. Hepp, K.: Proof of the Bogoliubov-Parasiuk theorem on renormalization. Commun. Math. Phys. 2, 301–326 (1966)

    Article  ADS  MATH  Google Scholar 

  26. Hörmander, L.: The analysis of linear partial differential operators I: distribution theory and fourier analysis. Springer (2003)

    Google Scholar 

  27. Hollands, S.: The operator product expansion for perturbative quantum field theory in curved spacetime. Commun. Math. Phys. 273, 1 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hollands, S., Wald, R.M.: Local wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227–311 (2007)

    Article  MathSciNet  Google Scholar 

  31. van Hove, L.: Sur certaines représentations unitaires d’un groupe infini de transformations. Proc. Roy. Acad. Sci. Belgium 26, 1–102

    Google Scholar 

  32. Il’in, V.A., Slavnov, D.S.: Observable algebras in the S-matrix approach. Theor. Math. Phys. 36, 32 (1978)

    MathSciNet  Google Scholar 

  33. Keller, G., Kopper, C., Salmhofer, M.: Perturbative renormalization and effective Lagrangians in phi**4 in four-dimensions. Helv. Phys. Acta 65, 32 (1992)

    MathSciNet  Google Scholar 

  34. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon. Phys. Rep. 207, 49–136 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Kriegl, A., Michor, P.: Convenient setting of global analysis, Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997). http://www.ams.org/online_bks/surv53/

  36. Lindner, F.: Perturbative Algebraic Quantum Field Theory at Finite Temperature. Ph.D. thesis, University of Hamburg (2013)

    Google Scholar 

  37. Neeb, K.-H.: Monastir lecture notes on infinite-dimensional lie groups. http://www.math.uni-hamburg.de/home/wockel/data/monastir.pdf

  38. Peierls, R.E.: The commutation laws of relativistic field theory. Proc. Roy. Soc. A214, 143–157 (1952). London

    Article  MathSciNet  ADS  Google Scholar 

  39. Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Scharf, G.: Finite QED: The Causal Approach. Springer, Verlag (1995)

    Google Scholar 

  41. Steinmann, O.: Perturbation Expansions in Axiomatic Field Theory. Lecture Notes in Physics 11. Springer (1971)

    Google Scholar 

  42. Steinmann, O.: Perturbation theory of wigthman functions. Commun. Math. Phys. 152, 627 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Steinmann, O.: Perturbative quantum field theory at positive temperatures: an axiomatic approach. Commun. Math. Phys. 170, 405 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Stückelberg, E.C.G., Rivier, D.: A propos des divergences en théorie des champs quantifiés. Helv. Phys. Acta 23, 236–239 (1950)

    MATH  Google Scholar 

  45. Waldmann, S.: Poisson-Geometrie und Deformationsquantisierung: Eine Einführung. Springer, Verlag (2007)

    Google Scholar 

  46. Weise, J.C.: On the algebraic formulation of classical general relativity. Diploma thesis, Hamburg (2011). http://www.desy.de/uni-th/theses/Dipl_Weise.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Fredenhagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fredenhagen, K., Rejzner, K. (2015). Perturbative Construction of Models of Algebraic Quantum Field Theory. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds) Advances in Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-21353-8_2

Download citation

Publish with us

Policies and ethics