Skip to main content

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

Radon is an ideal atmospheric tracer due its mean-life, which is long compared to turbulent timescales, but short enough to constrain 222Rn activities in the free troposphere; the mean-life is comparable to the transit time of air masses across major continents, but much shorter compared to the global mixing time scale of the atmosphere. A well-defined, yet, simple source function (~99 % from continents and ~1 % from oceans) and sink (100 % removal by radioactive decay), as well as large observed gradient in radon concentrations between oceanic and terrestrial air masses aid in identifying and quantifying the sources of air masses, thereby serving as an unambiguous indicator of recent terrestrial influence on the oceanic air mass. Vertical profiles of atmospheric radon in different seasons combined with modeling efforts have provided insights on the inter-seasonal variations of the fractional escape of other trace gases from the planetary boundary layer to the upper atmosphere. Future promising areas of research include investigations on the monsoon dynamics in the Indian subcontinent by combining air trajectory analysis and temporal variations of 222Rn in the upper air and identifying the possible link (if any) between radonic storms observed in the Polar Regions and transport of water vapor by atmospheric rivers from low to high latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrea MO, Berresheim H, Andreae TW (1988) Vertical distribution of dimethelsulfide, sulfur dioxide, aerosol ions, and radon over the northeast Pacific Ocean. J Atmos Chem 6:149–173

    Article  Google Scholar 

  • Balkanski YJ, Jacob DJ, Arimoto R et al (1992) Distribution of Rn-222 over the North Pacific—implications for continental influences. J Atmos Chem 14:353–373

    Article  Google Scholar 

  • Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a Review. J. Environ Radioact 102:500–513. doi:10.1016/j.jenvrad.2010.10.007

    Google Scholar 

  • Baskaran M, Naidu AS (1995) 210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Arctic. Geochim Cosmochim Acta 59:4435–4448

    Article  Google Scholar 

  • Bressan DJ, Larson RE, Wilkniss PE (1973) Atmospheric radon and dust, air mass trajectories and meteorological conditions over the Greenland Sea. Nature 245:74–77

    Google Scholar 

  • Carvalho FP (1995) Origins and concentrations of 222Rn, 210Pb, 210Bi and 210Po in the surface air at Lisbon, Portugal, at the Atlantic edge of the European continental landmass. Atmos Environ 29:1809–1919

    Article  Google Scholar 

  • Chambers SD, Zahorowski W, Williams AG et al (2013) Identifying tropospheric baseline air masses at Mauna Loa Observatory between 2004 and 2010 using Radon-222 and back trajectories. J Geophys Res 118(2):992–1004

    Google Scholar 

  • Chambers SD, Hong S-B, Williams AG, Crawford J, Griffiths AD, Park S-J (2014) Characterizing terrestrial influences of Antarctic air masses using Radon-222 measurements at King George Island. Atmos Chem Phys 14:9903–9916. doi:10.5194/acp-14-9903-2014

    Google Scholar 

  • Chambers SD, Wang F, Williams AG, Xiaodong D, Zhang H, Lonati G, Crawford J, Griffiths AD, Ianniello A, Allegrini I (2015) Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmos Environ 107:233–243

    Article  Google Scholar 

  • Conan F, Robertson LB (2002) Latitudinal distribution of radon-222 flux from continents. Tellus 54B, 127–133

    Google Scholar 

  • Crawford J, Cohen DD, Chambers S, Williams A, Stelcer E (2013) Incorporation of Radon-222 as a parameter in ME-2 to improve apportionment of PM2.5 sources in the Sydney region. Atmos Environ 80:378–388

    Article  Google Scholar 

  • Crawford J, Chambers S, Cohen DD, Griffiths A, Williams A, Stelcer E (2015) Using Radon-222 as an indicator of atmospheric mixing depth in ME-2 for PM2.5 source apportionment. Aerosol Air Qual Res 15:611–624

    Google Scholar 

  • Debaje SB, Vernekar KG, Ramachandran TV (1996) Study of atmospheric radon-222 concentration at Pune. Indian J Environ Prot 16(10):755–760

    Google Scholar 

  • Donner LJ, Horowitz LW, Fiore AM, Seman CJ, Blake DR, Blake NJ (2007) Transport of radon-222 and methyl iodide by deep convection in the GFDL Global atmospheric model AM2. J Geophys Res 112:D17303. doi:10.1029/2006JD007548

  • Gupta ML, Douglass AR, Kawa R et al (2004) Use of radon for evaluation of atmospheric transport models: sensitivity to emissions. Tellus B 56(5):404–412

    Article  Google Scholar 

  • Griffiths AD, Zahorowski W, Element A, Werczynski S (2010) A map of radon flux at the Australian land surface. Atmos Chem Phys 10:8969–8982

    Article  Google Scholar 

  • Iida TK, Yamada K, Hashiguchi Y, Morizumi J et al (2000) Measurements of atmospheric radon concentrations at various locations in east Asia. In: Inaba J, Hisamatsu S, Ohtsuka Y (eds) Distribution and speciation of radionuclides in the environment. Rokkasho, Aomori, pp 123–132

    Google Scholar 

  • Jacob DJ, Prather MJ, Rasch PJ et al (1997) Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J Geophys Res 102:5953–5970

    Article  Google Scholar 

  • Karstens U, Schwingshackl C, Schmithusen D, Levin I (2015) A process-based 222Rn flux map for Europe and its comparison to long-term observations. Atmos Chem Phys 15:12845–12865. doi:10.5914/acp-15-12845-2015

  • Kerr RA (2006) Rivers in the sky are flooding the world with tropical waters. Science 313:435

    Article  Google Scholar 

  • Kritz MA, Rosner SW, Kelly KK, Loewenstein M, Chan KR (1993) Radon measurements in the lower tropical stratosphere: evidence for rapid vertical transport and dehydration of tropospheric air. J Geophys Res 98:8725–8736

    Article  Google Scholar 

  • Kritz MA, Rosner SW, Stockwell DZ (1998) Validation of an off-line three-dimensional chemical transport model using observed radon profiles −1. Observations. J Geophys Res 104(D7):8425–8432

    Article  Google Scholar 

  • Lal D (2002) Cosmogenic radionuclides. In: Holton JR, Pyle J, Curry JA (eds) Encyclopedia of atmospheric sciences. Academic, London, pp 1891–1900

    Google Scholar 

  • Lal D, Baskaran M (2011) Application of cosmogenic isotopes as atmospheric tracers. In: Baskaran M (ed) Handbook of environmental isotope geochemistry, pp 575–589

    Google Scholar 

  • Lal D, Rama (1966) Characteristics of global tropospheric mixing based on man-made 14C, 3He, and 90Sr. J Geophys Res 71:2865–2874

    Article  Google Scholar 

  • Lambert G, Polian G, Taupin D (1970) Existence of periodicity in radon concentrations in the Large-Scale circulation at lower latitudes between 40 and 70 South. J Geophys Res 75:2341–2345

    Article  Google Scholar 

  • Lambert G, Polian G, Sanak J et al (1982) Radon cycle and its descendants to the study of troposphere stratosphere changes. Annales de Geophysique 38(4):497–531

    Google Scholar 

  • Liu SC, McAfee JR, Cicerone RJ (1984) Radon 222 and tropospheric vertical transport. J Geophys Res 89:7291–7297

    Article  Google Scholar 

  • Maenhaut W, Zoller WH, Coles DG (1979) Radio nuclides in the South Pole atmosphere. J Geophys Res 84:3131–3138

    Article  Google Scholar 

  • Merrill JT, Uematsu M, Beck R (1989) Meteorological analysis of long range transport of mineral aerosols over the North Pacific. J Geophys Res 94(D6):8584–8598

    Article  Google Scholar 

  • Moore HE, Poet SE, Martell EA (1973) 222Rn, 210Pb, 210Bi, and 210Po profiles and aerosol residence times versus altitude. J Geophys Res 78:7065–7075

    Article  Google Scholar 

  • Moore HE, Poet SE, Martell EA (1977) Vertical profiles of 222Rn and its long-lived daughters over the eastern Pacific. Environ Sci Technol 11:1207–1210

    Article  Google Scholar 

  • Newell RE, Newell NE, Zhu Y, Scott C (1992) Tropospheric Rivers? A pilot study. Geophys Res Lett 19(24):2401–2404

    Article  Google Scholar 

  • Nazaroff WW (1992) Radon transport from soil to air. Rev Geophys 30:137–160

    Article  Google Scholar 

  • Obrist D, Conen F, Vogt R, Siegwolf R, Alewell C (2006) Estimation of Hg0 exchange between ecosystems and the atmosphere using 222Rn and Hg0 concentration changes in the stable nocturnal boundary layer. Atmos Environ 40:856–866

    Article  Google Scholar 

  • Polian G, Lambert G, Ardouin B, Jegou A (1996) Long-range transport of continental radon in subantarctic areas. Tellus 38B:178–189

    Article  Google Scholar 

  • Prather MJ, McElroy MB, Wofsy SC, Russell G, Ring D (1987) Chemistry of the global troposphere: Fluorocarbons as tracers of air motion. J Geophys Res 92:6579–6613

    Article  Google Scholar 

  • Prospero JM, Carlson TN (1970) Radon-222 in the North Atlantic Trade Winds: its relationship to dust transport from Africa. Science 167:974–977

    Article  Google Scholar 

  • Rama (1969) Monsoon circulation from observations of natural radon. Earth Planet Sci Lett 6:56–60

    Article  Google Scholar 

  • Rama (1970) Using natural radon for delineating monsoon circulation. J Geophys Res 75(12):2227–2229

    Article  Google Scholar 

  • Rasch PJ, Feichter J, Law K, Mahowald N et al (2000) A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus 52B:1025–1056

    Article  Google Scholar 

  • Samuelsson C, Hallstadius L, Persson B, Hedvall R, Holm E (1986) 222Rn and 210Pb in the Arctic summer air. J Environ Radioact 3:35–54

    Article  Google Scholar 

  • Schery SD, Gaeddert DH (1982) Measurement of the effect of cyclic atmospheric pressure variation on the flux of 222Rn from the soil. Geophys Res Lett 9(8):835–838

    Article  Google Scholar 

  • Schery SD, Huang S (2004) An estimate of the global distribution of radon emissions from the ocean. Geophys Res Lett 31(L19104):2004. doi:10.1029/2004GL021051

    Google Scholar 

  • Slemr F, Brunke E-G, Whittlestone S, Zahorowski W, Ebinghaus R, Kock HH, Labuschagne C (2013) 222Rn-calibrated mercury fluxes from terrestrial surface of southern Africa. Atmos Chem Phys 13:6421–6428

    Article  Google Scholar 

  • Subramanian SK, Rangarajan C, Gopalakrishnan SS, Eapen CD (1977) Radon daughters radioactivity levels over Arabian Sea as indicators of air mass mixing. J Appl Meteorol 16(5):487–492

    Article  Google Scholar 

  • Szegvary T, Conen F, Ciais P (2009) European 222Rn inventory for applied atmospheric studies. Atmos Environ 43:1536–1539

    Article  Google Scholar 

  • Talbot RW, Dibb JE, Lefer BL, Bradshaw JD, Sandholm ST et al (1997) Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February-March 1994: results from PEM-West B. J Geophys Res 102(D23):28255–28274

    Article  Google Scholar 

  • Turekian KK, Graustein WC (2003) Natural radionuclides in the atmosphere. In: Treatise in geochemistry, 4.10, pp 261–279

    Google Scholar 

  • Turekian KK, Nozaki Y, Benninger LK (1977) Geochemistry of atmospheric radon and radon products. Annu Rev Earth Planet Sci 5:227–255

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Wilkening MH, Clements WE (1975) Radon-222 from the ocean surface. J Geophys Res 80:3828–3830

    Article  Google Scholar 

  • Wilkniss PE, Larson RE (1984) Atmospheric radon measurements in the Arctic: Fronts, seasonal observations, and transport of continental air to polar regions. J Atmos Sci 41:2347–2358

    Article  Google Scholar 

  • Wilkniss PE, Larson RE, Bressan DJ, Steranka J (1974) Atmospheric radon and continental dust near Antarctic and their correlation with air mass trajectories computed from NIMBUS-5 satellite photographs. J Appl Meteorol 13(4):512–515

    Article  Google Scholar 

  • Williams A, Chambers S, Zahorowski W, Crawford J, Matsumoto K, Uematsu M (2009) Estimating the Asian radon flux density and its latitudinal gradient in winter using ground-based radon observations at Sado Island. Tellus B 61:732–746. doi:10.1111/j.1600-0889.2009.00438.x

    Article  Google Scholar 

  • Williams AG, Zahorowski W, Chambers S, Griffiths A, Hacker JM et al (2011) The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers. J Atmos Sci 68:155–174. doi:10.1175/2010JAS3576.1

    Article  Google Scholar 

  • Zahorowski W, Chambers SD, Henderson-Sellers A (2004) Ground based radon-222 observations and their application to atmospheric studies. J Environ Radioact 76:3–33

    Article  Google Scholar 

  • Zahorowski W, Chambers SD, Wang T et al (2005) Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-Asia sites. Tellus B 57(2):124–140

    Article  Google Scholar 

  • Zahorowski W, Griffiths S, Chambers SD et al (2013) Constraining annual and seasonal radon-222 flux density from the Southern Ocean using radon-222 concentrations in the boundary layer at Cape Grim. Tellus B 65(19622):2013

    Google Scholar 

  • Zhu Y, Newell RE (1994) Atmospheric rivers and bombs. Geophys Res Lett 21(18):1999–2002

    Article  Google Scholar 

  • Zhou W, Guo Q, Chen B, Cheng G (2008) Estimating the amount and distribution of radon flux density from the soil surface in China. J Environ Radioact 99:1143–1148

    Article  Google Scholar 

Download references

Acknowledgments

The work synthesized in this chapter was partially supported by NSF Grants (OCE-1237059 and PLR-1434578). An in-depth review of this chapter by Scott Chambers is deeply appreciated. Editorial review by Katie Krupp is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Baskaran .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baskaran, M. (2016). Radon: A Tracer for Atmospheric Studies. In: Radon: A Tracer for Geological, Geophysical and Geochemical Studies. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-21329-3_4

Download citation

Publish with us

Policies and ethics