Skip to main content

In-Silico Models of Trabecular Bone: A Sensitivity Analysis Perspective

  • Chapter
  • First Online:
Uncertainty in Biology

Abstract

This chapter provides an overview from a sensitivity analysis perspective of computational mechanical modeling of trabecular bone, where models are generated from Computed Tomography images. Specifically, the effect of model development choices on the model results is systematically reviewed and analyzed for both micro-Finite Element and continuum-Finite Element models. Particular emphasis is placed on the image processing effects (thresholding, down-sampling, image to material properties relationships), the mesh-related aspects (mesh size, element type), and the computational representation of the boundary conditions. Typical issues are highlighted and recommendations are proposed with respect to various model applications, including global stiffness/strength and local failure stress/strain behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, A.E., Ellis, B.J., Weiss, J.A.: Verification, validation and sensitivity studies in computational biomechanics. Comput. Methods Biomech. Biomed. Eng. 10(3), 171–184 (2007)

    Article  Google Scholar 

  2. Austman, R.L., Milner, J.S., Holdsworth, D.W., Dunning, C.E.: The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone. J. Biomech. 41, 3171–3176 (2008)

    Article  Google Scholar 

  3. Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K., Nakamura, K.: Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40, 1745–1753 (2007)

    Article  Google Scholar 

  4. Bevill, G., Eswaran, S.K., Farahmand, F., Keaveny, T.M.: The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. Bone 44, 573–578 (2009)

    Article  Google Scholar 

  5. Bourne, B.C., van der Meulen, M.C.: Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J. Biomech. 37, 613–621 (2004)

    Article  Google Scholar 

  6. Boutroy, S., Van Rietbergen, B., Sornay-Rendu, E., Munoz, F., Bouxsein, M.L., Delmas, P.D.: Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J. Bone Miner. Res. 23(3), 392–399 (2008)

    Article  Google Scholar 

  7. Buckley, J.M., Loo, K., Motherway, J.: Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone 40, 767–774 (2007)

    Article  Google Scholar 

  8. Carlier, A., Van Oosterwyck, H., Geris, L.: In Silico Biology of Bone Regeneration Inside Calcium Phosphate Scaffolds Tissue Engineering, pp. 31-48. Springer, The Netherlands (2014)

    Google Scholar 

  9. Checa, S., Prendergast, P.J., Duda, G.N.: Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat. J. Biomech. 44, 1237–1245 (2011)

    Article  Google Scholar 

  10. Cifuentes, A., Kalbag, A.: A performance study of tetrahedral and hexahedral elements in 3-d finite element structural analysis. Finite Elem. Anal. Des. 12, 313–318 (1992)

    Article  Google Scholar 

  11. Cong, A., Buijs, J.O.D., Dragomir-Daescu, D.: In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur. Med. Eng. Phys. 33, 164–173 (2011)

    Article  Google Scholar 

  12. d’Otreppe, V.: From medical imaging to finite element simulations: a contribution to mesh generation and locking-free formulations for tetrahedra. Ph.D. Thesis, University of Liege (2012)

    Google Scholar 

  13. d’Otreppe, V., Boman, R., Ponthot, J.-P.: Generating smooth surface meshes from multi-region medical images. Int. J. Numer. Methods Biomed. Eng. 28, 642–660 (2012)

    Article  MathSciNet  Google Scholar 

  14. de Bien, C., Mengoni, M., d’Otreppe, V., Freichels, H., Jérôme, C., Ponthot, J.-P., Léonard, A., Toye, D.: Development of a biomechanical model of deer antler cancellous bone based on x-ray microtomographic images. In: Proceedings of Micro-CT User Meeting, pp. 137–145, 2012

    Google Scholar 

  15. Depalle, B., Chapurlat, R., Walter-Le-Berre, H., Bou-Saïd, B., Follet, H.: Finite element dependence of stress evaluation for human trabecular bone. J. Mech. Behav. Biomed. Mater. 18, 200–212 (2013)

    Article  Google Scholar 

  16. Ding, M., Odgaard, A., Hvid, I.: Accuracy of cancellour bone volume fraction measured by micro-CT scanning. J. Biomech. 32, 323–326 (1999)

    Article  Google Scholar 

  17. Eberle, S., Göttlinger, M., Augat, P.: An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones. Med. Eng. Phys. 35, 875–883 (2013)

    Article  Google Scholar 

  18. Geris, L., Gomez-Cabrero, D.: An introduction to uncertainty in the development of computational models of biological processes. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  19. Guldberg, R.E., Hollister, S.J., Charras, G.T.: The accuracy of digital image-based finite element models. Trans. ASME J. Biomech. Eng. 120, 289–295 (1998)

    Article  Google Scholar 

  20. Hara, T., Tanck, E., Homminga, J., Huiskes, R.: The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 31, 107–109 (2002)

    Article  Google Scholar 

  21. Harrison, N.M., McDonnell, P.F., O’Mahoney, D.C., Kennedy, O.D., O’Brien, F.J., McHugh, P.E.: Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. J. Biomech. 41, 2589–2596 (2008)

    Article  Google Scholar 

  22. Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjólfsson, S., Viceconti, M.: Mathematical relationships between bone density and mechanical properties: a literature review. Clin. Biomech. 23, 135–146 (2008)

    Article  Google Scholar 

  23. Henninger, H.B., Reese, S.P., Anderson, A.E., Weiss, J.A.: Validation of computational models in biomechanics. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224, 801–812 (2010)

    Google Scholar 

  24. Hojjat, S.-P., Beek, M., Akens, M.K., Whyne, C.M.: Can micro-imaging based analysis methods quantify structural integrity of rat vertebrae with and without metastatic involvement? J. Biomech. 45, 2342–2348 (2012)

    Google Scholar 

  25. Homminga, J., Huiskes, R., Van Rietbergen, B., Rüegsegger, P., Weinans, H.: Introduction and evaluation of a gray-value voxel conversion technique. J. Biomech. 34, 513–517 (2001)

    Article  Google Scholar 

  26. Jacobs, C.R., Davis, B.R., Rieger, C.J., Francis, J.J., Saad, M., Fyhrie, D.P.: The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. J. Biomech. 32, 1159–1164 (1999)

    Article  Google Scholar 

  27. Jones, A.C., Wilcox, R.K.: Assessment of factors influencing finite element vertebral model predictions. Trans. ASME J. Biomech. Eng. 129, 898–903 (2007)

    Article  Google Scholar 

  28. Keaveny, T.M., Pinilla, T.P., Crawford, R.P., Kopperdahl, D.L., Lou, A.: Systematic and random errors in compression testing of trabecular bone. J. Orthopaed. Res. 15, 101–110 (1997)

    Article  Google Scholar 

  29. Keaveny, T.M., Morgan, E.F., Niebur, G.L., Yeh, O.C.: Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3, 307–333 (2001)

    Article  Google Scholar 

  30. Kosmopoulos, V., Keller, T.S.: Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model. Med. Eng. Phys. 30, 725–732 (2008)

    Article  Google Scholar 

  31. Ladd, A.J.C., Kinney, J.H.: Numerical errors and uncertainties in finite-element modeling of trabecular bone. J. Biomech. 31, 941–945 (1998)

    Article  Google Scholar 

  32. Matsuura, M., Eckstein, F., Lochmueller, E.-M., Zysset, P.K.: The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech. Model. Mechanobiol. 7(1), 27–42 (2008)

    Article  Google Scholar 

  33. Mengoni, M., Voide, R., de Bien, C., Freichels, H., Jérôme, C., Léonard, A., Toye, D., van Lenthe, G.H., Müller, R., Ponthot, J.-P.: A non-linear homogeneous model for bone-like materials under compressive load. Int. J. Numer. Methods Biomed. Eng. 28(2), 334–348 (2012)

    Article  MathSciNet  Google Scholar 

  34. Morgan, E.F., Bayraktar, H.H., Keaveny, T.M.: Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36, 897–904 (2003)

    Article  Google Scholar 

  35. Müller, R., Rüegsegger, P.: Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med. Eng. Phys. 17, 126–133 (1995)

    Article  Google Scholar 

  36. Niebur, G.L., Feldstein, M.J., Yuen, J.C., Chen, T.J., Keavney, T.M.: High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J. Biomech. 33, 1575–1583 (2000)

    Article  Google Scholar 

  37. Pahr, D.H., Zysset, P.K.: A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J. Biomech. 42, 455–462 (2009)

    Article  Google Scholar 

  38. Parkinson, I.H., Badiei, A., Fazzalari, N.L.: Variation in segmentation of bone from micro-ct imaging: implications for quantitative morphometric analysis. Australas. Phys. Eng. Sci. Med. 31, 160–164 (2008)

    Article  Google Scholar 

  39. Ramos, A., Simoes, J.: Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med. Eng. Phys. 28, 916–924 (2006)

    Article  Google Scholar 

  40. Rüegsegger, P., Koller, B., Müller, R.: A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 58, 24–29 (1996)

    Article  Google Scholar 

  41. Schulte, F.A., Zwahlen, A., Lambers, F.M., Kuhn, G., Ruffoni, D., Betts, D., Webster, D.J., Müller, R.: Strain-adaptive in silico modeling of bone adaptation: a computer simulation validated by in vivo micro-computed tomography data. Bone 52, 485–492 (2013)

    Article  Google Scholar 

  42. Schliemann-Bullinger, M., Fey, D., Bastogne, T., Findeisen, R., Scheurich, P., Bullinger, E.: The experimental side of parameter estimation. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  43. Sikora, S.: Experimental and Computational Study of the Behaviour of Trabecular Bone-Cement Interfaces. PhD Thesis, University of Leeds, Leeds (2013)

    Google Scholar 

  44. Taddei, F., Cristofolini, L., Martelli, S., Gill, H.S., Viceconti, M.: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J. Biomech. 39, 2457–2467 (2006)

    Article  Google Scholar 

  45. Tarsuslugil, S.M., O’Hara, R.M., Dunne, N.J., Buchanan, F.J., Orr, J.F., Barton, D.C., Wilcox, R.K.: Development of calcium phosphate cement for the augmentation of traumatically fractured porcine specimens using vertebroplasty. J. Biomech. 46, 711–715 (2013)

    Google Scholar 

  46. Taylor, R.L., Simo, J.C., Zienkiewicz, O.C., Chan, A.C.H.: The patch test: a condition for assessing FEM convergence. Int. J. Numer. Methods Eng. 22, 39–62 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ulrich, D., Van Rietbergen, B., Weinans, H., Rüegsegger, P.: Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J. Biomech. 31, 1187–1192 (1998)

    Article  Google Scholar 

  48. Unnikrishnan, G.U., Morgan, E.F.: A new material mapping procedure for quantitative computed tomography-based continuum finite element analyses of the vertebra. J. Biomech. Eng. 133(7), 071001 (2011)

    Article  Google Scholar 

  49. Varga, P., Pahr, D.H., Baumbach, S., Zysset, P.K.: HR-pQCT based FE analysis of the most distal radius section provides an improved prediction of Colles’ fracture load in vitro. Bone 47(5), 982–988 (2010)

    Article  Google Scholar 

  50. Van Lenthe, G.H., Müller, R.: Prediction of failure load using micro-finite element analysis models: towards in vivo strength assessment. Drug Discov. Today Technol. 3(2), 221–229 (2006)

    Article  Google Scholar 

  51. Van Rietbergen, B., Weinans, H., Huiskes, R., Odgaard, A.: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28, 69–81 (1995)

    Google Scholar 

  52. Van Rietbergen, B., Weinans, H., Huiskes, R., Polman, B.J.W.: Computational strategies for iterative solutions of large fem applications employing voxel data. Int. J. Numer. Methods Eng. 39, 2743–2767 (1996)

    Article  MATH  Google Scholar 

  53. Wagner, D.W., Lindsey, D.P., Beaupre, G.S.: Deriving tissue density and elastic modulus from microCT bone scans. Bone 49, 931–938 (2011)

    Article  Google Scholar 

  54. Wijayathunga, V.N., Jones, A.C., Oakland, R.J., Furtado, N.R., Hall, R.M., Wilcox, R.K.: Development of specimen-specific finite element models of human vertebrae for the analysis of vertebroplasty. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 222, 221–228 (2008)

    Google Scholar 

  55. Wolfram, U., Wilke, H.J., Zysset, P.K.: Valid \(\mu \) finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions. J. Biomech. 43, 1731–1737 (2010)

    Article  Google Scholar 

  56. Zhao, Y.: Finite Element Modelling of Cement Augmentation and Fixation for Orthopaedic Applications. Ph.D. Thesis, University Of Leeds, Leeds (2010)

    Google Scholar 

  57. Zöllner, A.M., Tepole, A.B., Kuhl, E.: On the biomechanics and mechanobiology of growing skin. J. Theor. Biol. 297, 166–175 (2012)

    Article  Google Scholar 

  58. Zysset, P.K.: A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J. Biomech. 36(10), 1469–1485 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlène Mengoni .

Editor information

Editors and Affiliations

Conflict of Interest

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mengoni, M., Sikora, S., d’Otreppe, V., Wilcox, R.K., Jones, A.C. (2016). In-Silico Models of Trabecular Bone: A Sensitivity Analysis Perspective. In: Geris, L., Gomez-Cabrero, D. (eds) Uncertainty in Biology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-21296-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21296-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21295-1

  • Online ISBN: 978-3-319-21296-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics