Skip to main content

Sensitivity Analysis by Design of Experiments

  • Chapter
  • First Online:
Uncertainty in Biology

Abstract

The design of experiments (DOE) is a valuable method for studying the influence of one or more factors on the outcome of computer experiments. There is no limit to the number of times a computer experiment can be run, but they are often time-consuming. Moreover, the number of parameters in a computer model is often very large and the range of variation for each of these parameters is often quite extensive. The DOE provides the statistical tools necessary for choosing a minimum amount of parameter combinations resulting in as much information as possible about the computer model. In this chapter, several designs and analysing methods are explained. At the end of the chapter, these designs and methods are applied to a mechanobiological model describing tooth movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlier, A., Chai, Y.C., Moesen, M., Theys, T., Schrooten, J., Van Oosterwyck, H., Geris, L.: Designing optimal calcium phosphate scaffold-cell combinations using an integrative model-based approach. Acta Biomater. 7, 3573–3585 (2011)

    Article  Google Scholar 

  2. Dar, F.H., Meakin, J.R., Aspden, R.M.: Statistical methods in finite element analysis. J. Biomech. 35, 1155–1161 (2002)

    Article  Google Scholar 

  3. Ebden, M.: Gaussian processes for regression: a quick introduction. Lecture Notes (2008)

    Google Scholar 

  4. Eriksson, O., Tegnér, J.: Modeling and model simplification to facilitate biological insights and predictions. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  5. Fang, K.T.: The uniform design: application of number-theoretic methods in experimental design. Acta Mathematicae Applicatae Sinica 3, 363–372 (1980)

    MATH  MathSciNet  Google Scholar 

  6. Fang, K.T., Li, R., Sudijanto, A.: Design and Modeling for Computer Experiments. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  7. Fisher, R.A.: The Design of Experiments. Oliver & Boyd, Edinburgh (1935)

    Google Scholar 

  8. Garant, P.R. (ed.): Oral Cells and Tissues. Quintessence Publishing, Hanover Park (2003)

    Google Scholar 

  9. Geris, L., Gerisch, A., Maes, C., Carmeliet, G., Weiner, R., Vander Sloten, J., Van Oosterwyck, H.: Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results. MBEC 44, 280–289 (2006)

    Google Scholar 

  10. Geris, L., Gerisch, A., Sloten, J.V., Weiner, R., Van Oosterwyck, H.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theory Biol. 251(1), 137–158 (2008)

    Article  Google Scholar 

  11. Henneman, S., Von den Hoff, J.W., Maltha, J.C.: Mechanobiology of tooth movement. Eur. J. Orthod. 30(3), 299–306 (2008)

    Article  Google Scholar 

  12. Isaksson, H., van Donkelaar, C.C., Huiskes, R., Ito, K.: A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J. Theory Biol. 252, 230–246 (2008a)

    Article  Google Scholar 

  13. Isaksson, H., van Donkelaar, C.C., Huiskes, R., Yao, J., Ito, K.: Determining the most important cellular characteristics for fracture healing using design of experiments methods. J. Theory Biol. 255(1), 26–39 (2008)

    Article  Google Scholar 

  14. Kanzaki, H., Chiba, M., Shimizu, Y., Mitani, H.: Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappab ligand up-regulation via prostaglandin e2 synthesis. J. Bone Miner. Res. 17(2), 210–220 (2002)

    Article  Google Scholar 

  15. Kimoto, S., Matsuzawa, M., Matsubara, S., Komatsu, T., Uchimura, N., Kawase, T., Saito, S.: Cytokine secretion of periodontal ligament fibroblasts derived from human deciduous teeth: effect of mechanical stress on the secretion of transforming growth factor-beta 1 and macrophage colony stimulating factor. J. Periodontal Res. 34(5), 235–243 (1999)

    Article  Google Scholar 

  16. Kirk, P., Silk, D., Stumpf, M.P.H.: Reverse engineering under uncertainty. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  17. Krishnan, V., Davidovitch, Z.: Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofacial Orthop. 129(4), 469.e1-469.32 (2006)

    Google Scholar 

  18. Krishnan, V., Davidovitch, Z.: On a path to unfolding the biological mechanisms of orthodontic tooth movement. J. Dent. Res. 88(7), 597–608 (2009)

    Article  Google Scholar 

  19. Lacroix, D.: Simulation of tissue differentiation during fracture healing. PhD thesis, University of Dublin (2001)

    Google Scholar 

  20. Lin, C.L., Chang, S.H., Chang, W.J., Kuo, Y.C.: Factorial analysis of variables influencing mechanical characteristics of a single tooth implant placed in the maxilla using finite element analysis and the statistics-based taguchi method. Eur. J. Oral Sci. 115, 408–416 (2007)

    Google Scholar 

  21. Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nyström, A., Pettersen, J., Bergman, R.: Experimental design and optimization. Chemom. Intell. Lab. 42(2), 3–40 (1998)

    Article  Google Scholar 

  22. MacKay, D.J.C.: Introduction to gaussian processes. Lecture Notes (1998)

    Google Scholar 

  23. Malandrino, A., Planell, J., Lacroix, D.: Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation. J. Biomech. 42, 2780–2788 (2009)

    Article  Google Scholar 

  24. Mannakee, B.K., Ragsdale, A.P., Transtrum, M.K., Gutenkunst, R.N.: Sloppiness and the geometry of parameter space. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  25. Marotti, G.: The osteocyte as a wiring transmission system. J. Musculoskelet. Neuronal. Interact. 1(2), 133–136 (2000)

    Google Scholar 

  26. Montgomery, D.C.: Design and analysis of experiments, 7th edn. Wiley, New York (1997)

    Google Scholar 

  27. Myers, R.H., Montgomery, D.C.: Response surface methodology: process and product optimization using designed experiments. Wiley, New York (1995)

    Google Scholar 

  28. Nishijima, Y., Yamaguchi, M., Kojima, T., Aihara, N., Nakajima, R., Kasai, K.: Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod. Craniofac. Res. 9(2), 63–70 (2006)

    Article  Google Scholar 

  29. Pfeilschifter, J., Diel, I., Scheppach, B., Bretz, A., Krempien, R., Erdmann, J., Schmid, G., Reske, N., Bismar, H., Seck, T., Krempien, B., Ziegler, R.: Concentration of transforming growth factor beta in human bone tissue: relationship to age, menopause, bone turnover, and bone volume. J. Bone Miner. Res. 13(4), 716–730 (1998)

    Article  Google Scholar 

  30. Pinkerton, M.N., Wescott, D.C., Gaffey, B.J., Beggs, K.T., Milne, T.J., Meikle, M.C.: Cultured human periodontal ligament cells constitutively express multiple osteotropic cytokines and growth factors, several of which are responsive to mechanical deformation. J. Periodontal Res. 43(3), 343–351 (2008)

    Article  Google Scholar 

  31. Pivonka, P., Zimak, J., Smith, D.W., Gardiner, B.S., Dunstan, C.R., Sims, N.A., Martin, T.J., Mundy, G.R.: Model structure and control of bone remodeling: a theoretical study. Bone 43(2), 249–263 (2008)

    Article  Google Scholar 

  32. Provatidis, C.G.: An analytical model for stress analysis of a tooth in translation. Int. J. Eng. Sci. 39, 1361–1381 (2001)

    Article  Google Scholar 

  33. Rinchuse, D.J., Rinchuse, D.J., Sosovicka, M.F., Robison, J.M., Pendleton, R.: Orthodontic treatment of patients using bisphosphonates: a report of 2 cases. Am. J. Orthod. Dentofacial Orthop. 131(3), 321–326 (2007)

    Article  Google Scholar 

  34. Saltelli, A., Chan, K., Scott, E.M. (eds.): Sensitivity Analysis. Wiley, New York (2000)

    Google Scholar 

  35. Sandberg, M., Vuorio, T., Hirvonen, H., Alitalo, K., Vuorio, E.: Enhanced expression of tgf-beta and c-fos mrnas in the growth plates of developing human long bones. Development 102(3), 461–470 (1988)

    Google Scholar 

  36. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

    Google Scholar 

  37. Van Schepdael, A., Vander Sloten, J., Geris, L.: A mechanobiological model of orthodontic tooth movement. Biomech. Model Mechanobiol. 12(2), 249–265 (2013)

    Google Scholar 

  38. Van Schepdael, A., Vander Sloten, J., Geris, L.: Mechanobiological modeling can explain orthodontic tooth movement: three case studies. J. Biomech. 46(3), 470–477 (2013)

    Google Scholar 

  39. Wescott, D.C., Pinkerton, M.N., Gaffey, B.J., Beggs, K.T., Milne, T.J., Meikle, M.C.: Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J. Dent. Res. 86(12), 1212–1216 (2007)

    Article  Google Scholar 

  40. Yamaguchi, M., Aihara, N., Kojima, T., Kasai, K.: Rankl increase in compressed periodontal ligament cells from root resorption. J. Dent. Res. 85(8), 751–756 (2006)

    Article  Google Scholar 

  41. Yang, K., Teo, E.C., Fuss, F.K.: Application of Taguchi method in optimization of cervical ring cage. J. Biomech. 40, 3251–3256 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n279100 (An Van Schepdael and Liesbet Geris). Aurélie Carlier is a Fellow of the Research Foundation Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liesbet Geris .

Editor information

Editors and Affiliations

Conflict of Interest

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Schepdael, A., Carlier, A., Geris, L. (2016). Sensitivity Analysis by Design of Experiments. In: Geris, L., Gomez-Cabrero, D. (eds) Uncertainty in Biology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-21296-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21296-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21295-1

  • Online ISBN: 978-3-319-21296-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics