Skip to main content

Bayesian Model Selection Methods and Their Application to Biological ODE Systems

  • Chapter
  • First Online:
Uncertainty in Biology

Abstract

In this chapter, we focus on Bayesian model selection for biological dynamical systems. We do not present an overview over existing methods, but showcase their comparison and the application to ordinary differential equation (ODE) systems, as well as the inference of the parameters in the ODE system. For this, our method of choice is the Bayes factor, computed by Thermodynamic Integration. We first present several model selection methods, both alternatives to the Bayes factor as well as several methods for calculating the Bayes factor, foremost among them said Thermodynamic Integration. As a simple example for the selection problem, we resort to a choice between normal distributions, which is analytically tractable. We apply our chosen method to a medium sized ODE model selection problem from radiation science and demonstrate how predictions can be drawn from the model selection results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike, H.: A new look at the statistical model identification. Automatic Control, IEEE Transactions on (1974)

    Book  Google Scholar 

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular biology of the cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  3. Bachmann, J., Raue, A., Schilling, M., Böhm, M.E., Kreutz, C., Kaschek, D., Busch, H., Gretz, N., Lehmann, W.D., Timmer, J., Klingmüller, U.: Division of labor by dual feedback regulators controls jak2/stat5 signaling over broad ligand range. Mol. Syst. Biol. 7(1), 2011

    Google Scholar 

  4. Becker, V., Schilling, M., Bachmann, J., Baumann, U., Raue, A., Maiwald, T., Timmer, J., Klingmüller, U.: Covering a broad dynamic range: information processing at the erythropoietin receptor. Science 328(5984), 1404–1408 (2010)

    Article  Google Scholar 

  5. Bellman, R.: Dynamic programming and lagrange multipliers. In: Bellman, E. (Ed.) The Bellman Continuum: A Collection of the Works of Richard, pp. 49 (1986)

    Google Scholar 

  6. Box, G.E.P., Draper, N.R.: Empirical model-building and response surfaces. Wiley (1987)

    Google Scholar 

  7. Calderhead, Ben, Girolami, Mark: Estimating Bayes factors via thermodynamic integration and population MCMC. Comput. Stat. Data Anal. 53(12), 4028–4045 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chib, S., Jeliazkov, I.: Marginal likelihood from the metropolis-hastings output. J. Am. Stat. Assoc. 96(453), 270–281 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eydgahi, H., Chen, W.W., Muhlich, J.L., Vitkup, D., Tsitsiklis, J.N., Sorger, P.K.: Properties of cell death models calibrated and compared using bayesian approaches. Mol. Syst. Biol. 9(1), (2013)

    Google Scholar 

  10. Friel, N., Pettitt, A.N.: Marginal likelihood estimation via power posteriors. J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) 70(3), 589–607 (2008)

    Google Scholar 

  11. Gelman, A., Meng, X.L.: Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Stat. Sci., 163–185 (1998)

    Google Scholar 

  12. Greiter, M.B., Giussani, A., Höllriegl, V., Li, W.B., Oeh, U.: Human biokinetic data and a new compartmental model of zirconium - a tracer study with enriched stable isotopes. Sci. Total Environ. 409, 3701–3710 (2011)

    Article  Google Scholar 

  13. Greiter, M.B., Höllriegl, V., Oeh, U.: Method development for thermal ionization mass spectrometry in the frame of a biokinetic tracer study with enriched stable isotopes of zirconium. Int. J. Mass. Spectrom. 304(1), 1–8 (2011)

    Article  Google Scholar 

  14. Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7(2), 223–242 (2001)

    Google Scholar 

  15. Hug, S., Raue, A., Hasenauer, J., Bachmann, J., Klingmüller, U., Timmer, J., Theis, F.J.: High-dimensional Bayesian parameter estimation: Case study for a model of JAK2/STAT5 signaling. Math. Biosci. (2013)

    Google Scholar 

  16. ICRP: Age-dependent Doses to Members of the Public from Intake of Radionuclides (Part 1). ICRP Publication 56. Number Ann. ICRP, Vol. 20, No. 2. Pergamon Press, Oxford, 1989

    Google Scholar 

  17. ICRP: Age-dependent Doses to Members of the Public from Intake of Radionuclides (Part 2: Ingestion dose coefficients). ICRP Publication 67. Number Ann. ICRP, Vol. 23, No. 3–4. Pergamon Press, Oxford, 1993

    Google Scholar 

  18. ICRP: Individual Monitoring for Internal Exposure of Workers. ICRP Publication 78. Number Ann. ICRP, Vol. 27, No. 3–4. Pergamon Press, Oxford, 1997

    Google Scholar 

  19. ICRP: Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Number Ann. ICRP, Vol. 38, No. 3. Pergamon Press, Oxford, 2008

    Google Scholar 

  20. ICRP: Report on the Task Group on Reference Man. ICRP Publication 23. Pergamon Press, Oxford, 1975

    Google Scholar 

  21. Jacquez, J.A.: Compartmental analysis in biology and medicine, 3rd edn. BioMedware, Ann Arbor, MI (1996)

    Google Scholar 

  22. Jeffreys, H.: The theory of probability. Oxford University Press, 1998

    Google Scholar 

  23. Kirk, P., Silk, D., Stumpf, M.P.H.: Reverse engineering under uncertainty. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  24. Kirk, P., Thorne, T., Stumpf, M.P.: Model selection in systems and synthetic biology. Curr. Opin. Biotechnol. 1–8 (2013)

    Google Scholar 

  25. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Krumsiek, J., Pölsterl, S., Wittmann, D.M., Theis, F.J.: Odefy-from discrete to continuous models. BMC Bioinform. 11(1), 233 (2010)

    Article  Google Scholar 

  27. Lagani, V., Triantafillou, S., Ball, G., Tegnér, J., Tsamardinos. I.: Probabilistic computational causal discovery for systems biology. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  28. Lartillot, N., Philippe, H.: Computing Bayes factors using thermodynamic integration. Syst. Biol. 55(2), 195–207 (2006)

    Article  Google Scholar 

  29. Li, W.B., Greiter, M., Oeh, U., Hoeschen, C.: Reliability of a new biokinetic model of zirconium in internal dosimetry part i, parameter uncertainty analysis. Health Phys. 101(6), 660–676 (2011)

    Article  Google Scholar 

  30. Li, W.B., Greiter, M., Oeh, U., Hoeschen, C.: Reliability of a new biokinetic model of zirconium in internal dosimetry part ii, parameter sensitivity analysis. Health Phys. 101(6), 676–692 (2011)

    Google Scholar 

  31. Marin, J.M., Robert, C.P.: Bayesian core: a practical approach to computational Bayesian statistics. Springer, 2007

    Google Scholar 

  32. Myung, I.J., Pitt, M.A.: Applying occam’s razor in modeling cognition: A bayesian approach. Psychonomic Bull. Rev. 4(1), 79–95 (1997)

    Google Scholar 

  33. Neal, R.M.: Probabilistic inference using markov chain monte carlo methods. Technical report, University of Toronto, 1993

    Google Scholar 

  34. Neal, R.: The Harmonic Mean of the Likelihood: Worst Monte Carlo Method Ever. http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever, (2008)

  35. Newton, M.A., Raftery, A.E.: Approximate Bayesian inference with weighted likelihood bootstrap. J. Royal Stat. Soc. Ser. B (1994)

    Google Scholar 

  36. Raia, V., Schilling, M., Böhm, M., Hahn, B., Kowarsch, A., Raue, A., Sticht, C., Bohl, S., Saile, M., Möller, P., Gretz, N., Timmer, J., Theis, F., Lehmann, W.-D., Lichter, P., Klingmüller, U.: Dynamic mathematical modeling of il13-induced signaling in hodgkin and primary mediastinal b-cell lymphoma allows prediction of therapeutic targets. Cancer Res. 71(3), 693–704 (2011)

    Google Scholar 

  37. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York, 2004

    Google Scholar 

  38. Schliemann-Bullinger, M., Fey, D., Bastogne, T., Findeisen, R., Scheurich, P., Bullinger, E.: The experimental side of parameter estimation. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  39. Schmidl, D., Czado, C., Hug, S., Theis, F.J.: A vine-copula based adaptive mcmc sampler for efficient inference of dynamical systems. Bayesian Anal. 8(1), 1–22 (2013)

    Google Scholar 

  40. Schmidl, D., Hug, S., Li, W., Greiter, M.B., Theis, F.J.: Bayesian model selection validates a biokinetic model for zirconium processing in humans. BMC Syst. Biol. 6(95), (2012)

    Google Scholar 

  41. Schmidl, D.: Bayesian model inference in dynamic biological systems using Markov Chain Monte Carlo methods. Ph.D. thesis, München, Technische Universität München, 2012

    Google Scholar 

  42. Schwarz, G.: Estimating the dimension of a model. Annals Stat. (1978)

    Google Scholar 

  43. Sunnåker, M., Stelling, J.: Model extension and model selection. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  44. Xu, T.-R., Vyshemirsky, V., Gormand, A., von Kriegsheim, A., Girolami, M., Baillie, G.S., Ketley, D., Dunlop, A.J., Milligan, G., Houslay, M.D., et al.: Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci. Signal. 3(113), ra20 (2010)

    Google Scholar 

  45. Zhao, W., Elie, V., Roussey, G., Brochard, K., Niaudet, P., Leroy, V., Loirat, C., Cochat, P., Cloarec, S., André, J.L., Garaix, F., Bensman, A., Fakhoury, M., Jacqz-Aigrain, E.: Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin. Pharmacol. Ther. 86(6), 609–618 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian J. Theis .

Editor information

Editors and Affiliations

Conflict of Interest

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hug, S., Schmidl, D., Li, W.B., Greiter, M.B., Theis, F.J. (2016). Bayesian Model Selection Methods and Their Application to Biological ODE Systems. In: Geris, L., Gomez-Cabrero, D. (eds) Uncertainty in Biology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-21296-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21296-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21295-1

  • Online ISBN: 978-3-319-21296-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics