Skip to main content

Stress Analysis of 3L-NPC Wind Power Converter Under Fault Condition

  • Chapter
  • First Online:
  • 1997 Accesses

Part of the book series: Research Topics in Wind Energy ((RTWE,volume 5))

Abstract

This chapter investigates the thermal stress of wind power converter when suffering grid faults. The comprehensive analysis for the electrical and thermal behaviors of power devices undergoing various grid faults is conducted on the 3L-NPC wind power converter. Afterwards, a series of thermal-redistributed modulation methods and a power control strategy which utilizes the zero sequence current are presented to achieve better performance under this adverse condition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Saccomando G, Svensson J, Sannino A (2002) Improving voltage disturbance rejection for variable-speed wind turbines. IEEE Trans Energy Convers 17(3):422–428

    Article  Google Scholar 

  2. Teodorescu R, Liserre M, Rodriguez P (2011) Grid converters for photovoltaic and wind power systems. Wiley-IEEE Press, New York

    Google Scholar 

  3. Rodríguez P, Luna A, Muñoz-Aguilar R, Etxeberria-Otadui I, Teodorescu R, Blaabjerg F (2012) A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions. IEEE Trans Power Electron 27(1):99–112

    Article  Google Scholar 

  4. Rodriguez P, Timbus AV, Teodorescu R, Liserre M, Blaabjerg F (2007) Flexible active power control of distributed power generation systems during grid faults. IEEE Trans Ind Electron 54(5):2583–2592

    Article  Google Scholar 

  5. Song Hong-Seok, Nam Kwanghee (1999) Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans Ind Electron 46(5):953–959

    Article  Google Scholar 

  6. Muyeen SM, Takahashi R, Murata T, Tamura J (2010) A variable speed wind turbine control strategy to meet wind farm grid code requirements. IEEE Trans Power Syst 25(1):331–340

    Article  Google Scholar 

  7. Kaminski N, Kopta A (2011) Failure rates of HiPak Modules due to cosmic rays. ABB application note 5SYA 2042-04, Mar 2011

    Google Scholar 

  8. Akagi H, Kanazawa Y, Nabae A (1984) Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans Ind Appl IA-20(3):625–630

    Google Scholar 

  9. Semikron Application Note: 3L NPC & TNPC Topology, AN-11001, 2011

    Google Scholar 

  10. Busquets-Monge S, Bordonau J, Boroyevich D, Somavilla S (2004) The nearest three virtual space vector PWM—a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter. IEEE Power Electron Lett 2(1):11–15

    Article  MATH  Google Scholar 

  11. Busquets-Monge S, Bordonau J, Beristain JA (2006) Comparison of losses and thermal performance of a three-level three-phase neutral-point-clamped DC-AC converter under a conventional NTV and the NTV2 modulation strategies. In: Proceedings of IECON’ 2006, pp 4819–4824

    Google Scholar 

  12. Ma K, Blaabjerg F (2012) Loss and thermal redistributed modulation methods for three-level neutral-point-clamped wind power inverter undergoing low voltage ride through. IEEE Trans Ind Electron (Also in Proceedings of ISIE’ 2012, pp 1880–1887, 2012)

    Google Scholar 

  13. Ng CH, Ran L, Bumby J (2008) Unbalanced-grid-fault ride-through control for a wind turbine inverter. IEEE Trans Ind Appl 44(3):845–856

    Google Scholar 

  14. Miret J, Castilla M, Camacho A, Vicuña L, Matas J (2012) Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags. IEEE Trans Power Electron 27(10):4262–4271

    Article  Google Scholar 

  15. González-Espín F, Garcerá G, Patrao I, Figueres E (2012) An adaptive control system for three-phase photovoltaic inverters working in a polluted and variable frequency electric grid. IEEE Trans Power Electron 27(10):4248–4261

    Article  Google Scholar 

  16. Ma K, Blaabjerg F, Liserre M (2013) Power controllability of three-phase converter with unbalance AC source. In: Proceedings of APEC’ 2013

    Google Scholar 

  17. Ma K, Blaabjerg F, Liserre M (2011) Thermal analysis of multilevel grid side converters for 10 MW wind turbines under low voltage ride through. IEEE Trans Ind Appl (Also in Proceedings of ECCE’ 2011, pp 2117–2124, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ma, K. (2015). Stress Analysis of 3L-NPC Wind Power Converter Under Fault Condition. In: Power Electronics for the Next Generation Wind Turbine System. Research Topics in Wind Energy, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-21248-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21248-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21247-0

  • Online ISBN: 978-3-319-21248-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics