Skip to main content

Energy Storage for Medium- to Large-Scale Applications

  • Chapter
Energy Storage
  • 185k Accesses

Abstract

Most of the highly visible applications of advanced energy storage technologies are for relatively small applications, such as in portable computers or implanted medical devices, where the paramount issue is the amount of energy stored per unit weight or volume, and cost is not always of prime importance. Such energy storage components and systems have occupied much of the attention in this text, especially the later chapters related to electrochemical cells and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunt T, Clark N, Baca W. 18th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Fort Lauderdale, FL (2008)

    Google Scholar 

  2. Furukawa J (2013) Development of Ultra Battery. Furukawa Review No. 43, Furukawa Electric Co

    Google Scholar 

  3. Furukawa J, Takada T, Monma D, Lam LT (2010) J Power Sources 195:1241

    Article  Google Scholar 

  4. Joo S-K, Raistrick ID, Huggins RA (1985) Mater Res Bull 20:897

    Article  Google Scholar 

  5. Joo S-K, Raistrick ID, Huggins RA (1985) Mater Res Bull 20:1265

    Article  Google Scholar 

  6. Joo S-K, Raistrick ID, Huggins RA (1985) Solid State Ion 17:313

    Article  Google Scholar 

  7. Joo S-K, Raistrick ID, Huggins RA (1986) Solid State Ion 18/19:592

    Article  Google Scholar 

  8. Inaguma Y et al (1993) Solid State Commun 86:689

    Article  Google Scholar 

  9. Kawai H, Kuwano J (1994) J Electrochem Soc 141:L78

    Article  Google Scholar 

  10. Inaguma Y, Chen L, Itho M, Nakamura T (1994) Solid State Ion 70/71, 196:203

    Google Scholar 

  11. Inaguma Y, Yu J, Shan Y-J, Itho M, Nakamura T (1995) J Electrochem Soc 142:L8

    Article  Google Scholar 

  12. Robertson AD, Garcia Martin S, Coats A, West AR (1995) J Mater Chem 5:1405

    Article  Google Scholar 

  13. Birke P, Scharner S, Huggins RA, Weppner W (1997) J Electrochem Soc 144:L167

    Article  Google Scholar 

  14. Sauvage F, Laffont L, Tarascon J-M, Baudrin E (2007) Inorg Chem 46:3289

    Article  Google Scholar 

  15. Doeff MM, Richardson TJ, Kepley L (1996) J Electrochem Soc 143:2507

    Article  Google Scholar 

  16. Doeff MM, Anapolsky A, Edman L, Richardson TJ, DeJonghe LC (2001) J Electrochem Soc 148:A230

    Article  Google Scholar 

  17. Whitacre JF, Tevar A, Sharma S (2010) Electrochem Commun 12:463

    Article  Google Scholar 

  18. Tevar AD, Whitacre JF (2010) J Electrochem Soc 157:A870

    Article  Google Scholar 

  19. Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf LV, Yang Z, Liu J (2011) Adv Mater 23:3155

    Article  Google Scholar 

  20. Whitacre JF, Wiley T, Shanbhag S, Wenzhuo Y, Mohamed A, Chun SE, Weber E, Blackwood D, Lynch-Bell E, Gulakowski J, Smith C, Humphreys D (2012) J Power Sources 213:255

    Article  Google Scholar 

  21. Zhou X, Guduru RK, Mohanty P (2013) J Mater Chem A 1:2757

    Article  Google Scholar 

  22. Huggins RA (1997) Ionics 3:379

    Article  Google Scholar 

  23. Huggins RA (1998) Solid State Ion 113:533

    Article  Google Scholar 

  24. Robin MB, Day P (1967) Adv Inorg Chem Radiochem 10:247

    Google Scholar 

  25. Brown J (1724) Philos Trans 33:17

    Article  Google Scholar 

  26. Weiser HB (1938) Inorganic Colloid Chemistry, Vol 3, Colloidal Salts. John Wiley & Sons, New York, p 343

    Google Scholar 

  27. Keggin JF, Miles FD (1936) Nature 577

    Google Scholar 

  28. Wilde RE, Ghosh SN, Marshall BJ (1970) Inorg Chem 9:2512

    Article  Google Scholar 

  29. Siperko LM, Kuwana T (1983) J Electrochem Soc 130:396

    Article  Google Scholar 

  30. Crumblis AL, Lugg PS, Morosoff N (1984) Inorg Chem 23:4701

    Article  Google Scholar 

  31. Armand MB, Whittingham MS, Huggins RA (1972) Mater Res Bull 7:101

    Article  Google Scholar 

  32. Oi T (1986) In Annual Review of Materials Science R. A. Huggins (Eds), 16, p. 185

    Google Scholar 

  33. Itaya K, Uchida I, Neff VD (1986) Acc Chem Res 19:162

    Article  Google Scholar 

  34. Itaya K, Ataka T, Toshima S (1982) J Am Chem Soc 104:4767

    Article  Google Scholar 

  35. Neff VD (1985) J Electrochem Soc 132:1382

    Article  Google Scholar 

  36. Honda K, Hayashi H (1987) J Electrochem Soc 134:1330

    Article  Google Scholar 

  37. Wessells CD. PhD Dissertation, Stanford University (2012)

    Google Scholar 

  38. Wessells CD, Huggins RA, Cui Y (2011) Nat Commun 2:550

    Google Scholar 

  39. Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nano Lett 11:5421

    Article  Google Scholar 

  40. Wessells CD, Peddada SV, McDowell MT, Huggins RA, Cui Y (2012) J Electrochem Soc 159:A98

    Article  Google Scholar 

  41. Wessells CD, McDowell MT, Peddada SV, Pasta M, Huggins RA, Cui Y (2012) ACS Nano 6:1688

    Article  Google Scholar 

  42. Wang RY, Wessells CD, Huggins RA, Cui Y (2013) Nano Lett 13:5748

    Google Scholar 

  43. Lee H-W, Pasta M, Wang RY, Ruffo R, Cui Y (2014) Faraday Disc 176:69

    Article  Google Scholar 

  44. Lee H-W, Wang RY, Pasta M, Lee SW, Liu N, Cui Y (2014) Nat Commun 5:5280

    Article  Google Scholar 

  45. Eftekhari A (2004) J Power Sources 126:221

    Article  Google Scholar 

  46. Lu Y, Wang L, Cheng J, Goodenough JB (2012) Chem Commun 48:6544

    Article  Google Scholar 

  47. Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough JB (2013) Angew Chem Int Ed 52:1964

    Article  Google Scholar 

  48. Pasta M, Wessells CD, Huggins RA, Cui Y (2012) Nat Commun 3:2139

    Article  Google Scholar 

  49. Huggins RA (2013) J Electrochem Soc 160:A3020

    Article  Google Scholar 

  50. Pasta M, Wessells CD, Liu N, Nelson J, McDowell MT, Huggins RA, Toney MF, Cui Y (2014) Nat Commun 5:3007

    Google Scholar 

  51. Wessells C, Ruffo R, Huggins RA, Cui Y (2010) Electrochem Solid-State Lett 13:A59

    Article  Google Scholar 

  52. Wessells C, Huggins RA, Cui Y (2011) J Power Sources 196:2884

    Article  Google Scholar 

  53. Radzilowski RH, Yao YF, Kummer JT (1969) J Appl Phys 40:4716

    Article  Google Scholar 

  54. Whittingham MS, Huggins RA (1971) J Chem Phys 54:414

    Article  Google Scholar 

  55. Weber N, Kummer JT (1967) Proc Ann Power Sources Conf 21:37

    Google Scholar 

  56. Yao YFY, Kummer JT (1967) J Inorg Nucl Chem 29:2453

    Article  Google Scholar 

  57. Sudworth JL, Tilley AR (1985) The Sodium Sulphur Battery. Chapman and Hall, London

    Google Scholar 

  58. Gahn RF, Hagedorn NH, Ling JS. DOE/NASA/12726-21 (1983)

    Google Scholar 

  59. Ponce de Leon C, Frias-Ferrer A, Gonzales-Garcia J, Szanto DA, Walsh FC (2006) J Power Sources 160:716

    Article  Google Scholar 

  60. Sum E, Skyllas-Kazacos M (1985) J Power Sources 15:179

    Article  Google Scholar 

  61. Sum E, Rychcik M, Skyllas-Kazacos M (1985) J Power Sources 16:85

    Article  Google Scholar 

  62. Skyllas-Kazacos M, Rychcik M, Robins R, Fane A, Green M (1985) J Electrochem Soc 133:1057

    Article  Google Scholar 

  63. Rychcik M, Skyllas-Kazacos M (1987) J Power Sources 19:45

    Article  Google Scholar 

  64. Rychcik M, Skyllas-Kazacos M (1988) J Power Sources 22:59

    Article  Google Scholar 

  65. Skyllas-Kazacos M, Grossmith F (1987) J Electrochem Soc 134:2950

    Article  Google Scholar 

  66. Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z (2011) Adv Energy Mater 1:394

    Article  Google Scholar 

  67. Wang W, Luo Q, Li B, Wei X, Li L, Yang Z (2013) Adv Funct Mater 23:970

    Article  Google Scholar 

  68. Bradwell DJ, Kim H, Sirk AHC, Sadoway DR (2012) J Am Chem Soc 134:1895

    Article  Google Scholar 

  69. Kim H, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Jiang K, Tomaszowska AA, Wang K, Wei W, Ortiz LA, Barriga SA, Poizeau SM, Sadoway DR (2013) Chem Rev 113:2075

    Article  Google Scholar 

  70. Wang K, Jiang K, Chung B, Ouchi T, Burke PJ, Boysen DA, Bradwell DJ, Kim H, Muecke U, Sadoway DR (2014) Nature 514:348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huggins, R.A. (2016). Energy Storage for Medium- to Large-Scale Applications. In: Energy Storage. Springer, Cham. https://doi.org/10.1007/978-3-319-21239-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21239-5_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21238-8

  • Online ISBN: 978-3-319-21239-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics