The Final Version of Leibniz’s Planetary Theory

  • Paolo Bussotti
Part of the Science Networks. Historical Studies book series (SNHS, volume 52)


Leibniz explained the final version of his theory in the Illustratio Tentaminis de Motuum Coelestium Causis (1706). This work, which was not published in Leibniz’s lifetime, is divided into two parts. However, with regard to the content, it is possible to identify three conceptual cores:


Circular Motion Planetary Orbit Centripetal Force Latin Text Vortex Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aiton EJ (1964a) The inverse problem of central forces. Annals of Science, 20, 1, pp. 81–99.
  2. Aiton EJ (1972) The vortex theory of planetary motions. American Elsevier Publishing Company, New York.zbMATHGoogle Scholar
  3. Aiton EJ (1988) The solution of inverse-problem for central forces in Newton’s Principia. Archives International d’Histoire des Sciences, 38 (121), pp. 271–276.zbMATHMathSciNetGoogle Scholar
  4. Bertoloni Meli D (1993) Equivalence and priority: Newton versus Leibniz. Clarendon Press, Oxford.zbMATHGoogle Scholar
  5. Bussotti P, Pisano R (2014b) Newton’s Philosophiae Naturalis Principia Mathematica “Jesuit” edition: The tenor of a huge work. Rendiconti Lincei Matematica e Applicazioni, 25, pp. 413–444.Google Scholar
  6. Cassini GD (1693) De l’origine et du progrés de l’astromomie et de son usage dans la geographie et dans la navigation. In Recueil d’observations faites en plusieurs voyages par ordre de sa majesté, pour perfectionner l’astronomie et la geographie. Avec divers Traitez astronomiques, Paris, Imprimerie Royale, pp. 1–43.Google Scholar
  7. Cohen BI (1962) Leibniz on Elliptical Orbits: As Seen in his Correspondence with the Académie Royale des Sciences in 1700. Journal of the History of Medicine, January, pp. 72–82.Google Scholar
  8. De Gandt F (1995) Force and Geometry in Newton’s Principia. Princeton University Press, Princeton.zbMATHGoogle Scholar
  9. Erlichson H (1994) The visualization of quadratures in the mystery of the corollary 3 to proposition 41 of Newton’s ‘Principia’. Historia Mathematica, 2, pp. 148–161.MathSciNetCrossRefGoogle Scholar
  10. Gregory D (1702) Astronomiae physicae et geometricae elementa. Sheldonian Theatre, Oxford.Google Scholar
  11. Guicciardini N (1995) Johann Bernoulli, John Keill and the inverse problem of central forces. Annals of Science, 56, 2, pp. 537–575. 10.1080/00033799500200401
  12. Guicciardini N (1999). Reading the Principia. The debate on Newton’s mathematical methods for natural philosophy from 1687 to 1736. Cambridge University Press, Cambridge.zbMATHCrossRefGoogle Scholar
  13. Knobloch E (2008) Generality and infinitely small quantities in Leibniz’s mathematics - The case of his Arithmetical quadrature of conic sections and related curves. In U. Goldenbaum, D. Jesseph (eds.), Infinitesimal differences, Controversies between Leibniz and his contemporaries, Berlin-New York, de Gruyter, pp. 171–183.Google Scholar
  14. Leibniz GW (1671, 1860, 1962) Theoria Motus abstracti seu Rationes Motuum universale, a sensu et phaenomenis independentes. In Leibniz ([1849–1863], 1962), VI volume, pp. 61–80.Google Scholar
  15. Leibniz GW (1689, 1860, 1962) Tentamen de Motuum Coelestium Causis (Erste Bearbeitung). In Leibniz ([1849–1863], 1962), VI volume, pp. 144–161.Google Scholar
  16. Leibniz GW (1706, 1860, 1962) Illustratio Tentaminis de Motuum Coelestium Causis, Pars I et Pars II plus Beilage. In Leibniz ([1849–1863], 1962), VI volume, pp. 254–280.Google Scholar
  17. Newton I ([1726] 1729) The Mathematical principles of natural philosophy, Translated by Motte Andrew. London, Motte B.Google Scholar
  18. Newton I ([1726] [1739–1742], 1822) Philosophiae naturalis principia matematica [third edition], auctore Isaaco Newtono, Eq. Aurato. Perpetuis commentariis illustrate, communi studio pp. Thomae le Seur et Francisci Jacquier ex Gallicana Minimorum Familia, matheseos professsorum. Editio nova, summa cura recemsita. Duncan, Glasgow.Google Scholar
  19. Ozanam J (1691) Dictionnaire mathématique ou idée générale des mathématiques. Amsterdam, Huguetan.Google Scholar
  20. Stein SK (1996) Inverse Problem fo Central Forces. Mathematics Magazine, 69, 2, pp. 83–93.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paolo Bussotti
    • 1
  1. 1.University of UdineUdineItaly

Personalised recommendations