An Interlude: Leibniz’s Concept of Inertia

  • Paolo Bussotti
Part of the Science Networks. Historical Studies book series (SNHS, volume 52)


In the general context of physics and in the planetary theory, in our specific case, the tendency of a rotating body to recede along the tangent is a fundamental element. We have seen that paracentric motion depends on the two opposite tendencies due to the solicitation of gravity and to the conate to recede. In terms of Newtonian physics the latter is a consequence of the inertia principle. Although Leibniz considered the conate to recede as a pivotal physical feature of curvilinear motions, he never associated it to the word inertia. Leibniz spoke of natural inertia, but this has nothing to do with the tendency to escape along the tangent. More in general: the natural inertia in Leibniz is not Newton’s inertia. Therefore some questions arise:


Passive Force Rectilinear Motion Accelerate Motion Absolute Motion Natural Inertia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arthur R (1998) Cohesion, division and harmony: physical aspects of Leibniz’s continuum problem (1671–1686), in Perspectives on science, 6, 1/2, pp. 110–135.
  2. Bernstein HR (1981) Passivity and inertia in Leibniz’s dynamics. Studia Leibnitiana, 13, 1, pp. 97–113.MathSciNetGoogle Scholar
  3. Bertoloni Meli D (1993) Equivalence and priority: Newton versus Leibniz. Clarendon Press, Oxford.zbMATHGoogle Scholar
  4. Bouquiaux L (2008) Leibniz Against the Unreasonable Nowtonian Physics, in M. Dascal (Ed.) Leibniz: What Kind of Rationalist?, Springer, pp. 99–110.Google Scholar
  5. Clarke DM (1982) Descartes’ philosophy of science, Manchester, Manchester University Press.Google Scholar
  6. Crockett T (2008) Space and Time in Leibniz’s Early Metaphysics. The Leibniz Review 18, pp. 41–79.CrossRefGoogle Scholar
  7. Duchesneau F (1994) La dynamique de Leibniz. Vrin, Paris.Google Scholar
  8. Gabbey A (1971) Force and inertia in seventeenth-century dynamics. Studies in History and Philosophy of Science, 2, 1, pp. 1–67.Google Scholar
  9. Garber D (1992) Descartes’ Metaphysical Physics, Chicago, The University of Chicago Press.Google Scholar
  10. Garber D (1994, 2006) Leibniz: physics and philosophy. In L. Jolley (editor) The Cambridge Companion to Leibniz, Cambridge, Cambridge University Press, pp. 270–352. Published on line 2006.Google Scholar
  11. Garber D (2009) Leibniz: Body, Substance, Monad, Oxford, Oxford University Press.CrossRefGoogle Scholar
  12. Ghins M (1990) L’inertie et l’espace-temps absolu de Newton à Einstein : une analyse philosophique. Palais des Académies, Bruxelles.
  13. Giorgio E (2011) Trägheit und circulatio harmonica: Formen der Subjektivität im “Tentamen” von 1689 und in der “Theodizee”, in H Breger, J Herbts, S Erdner (Eds) Natur und Subjekt, IX internationaler Leibniz Kongress unter der Schirmerrscahft des Bundespräsidenten, Hannover 26. September bis 1. Oktober 2011. Vorträge, Teil 1 Hannover, Hartmann, pp. 292–299.
  14. Giulini G (2002) Das Problem der Trägheit. Philosophia Naturalis, 39, pp. 343–374.MathSciNetGoogle Scholar
  15. Jauernig A (2008) Leibniz on Motion and the Equivalence of Hypotheses. The Leibniz Review, 18, pp. 1–40.CrossRefGoogle Scholar
  16. Lariviere B (1987) Leibnitian Relationalism and the problem of inertia. Canadian Journal of Philosophy, 17, 2, pp. 437–448.Google Scholar
  17. Leibniz GW (1671, 1860, 1962) Theoria Motus abstracti seu Rationes Motuum universale, a sensu et phaenomenis independentes. In Leibniz ([1849–1863], 1962), VI volume, pp. 61–80.Google Scholar
  18. Leibniz GW (1695, 1860, 1962) Specimen Dynamicum pro admirandis Naturae Legibus circa corporum vires et mutuas actiones detegentis et ad suas causas revocandis. Pars I et Pars II. In Leibniz ([1849–1863], 1962), VI volume, pp. 234–254.Google Scholar
  19. Leibniz GW (1695a, 1875–1890, 1978) Systeme nouveau de la nature et de la communication des substances, aussi bien que de l’union qu’il y a entre l’ame et les corps, in Leibniz (1875–1890, 1978) IV volume, pp. 477–487.Google Scholar
  20. Leibniz GW (1710, 1885, 1978) Essais de Théodicée. In Leibniz ([1875–1890], 1978), VI volume, pp. 21–375.Google Scholar
  21. Leibniz GW (1989) Philosophical papers and letters, edited by L. E. Loemker, Kluwer Academic Publishers. Reprint of the second edition, 1969.Google Scholar
  22. Leibniz (2013) The Leibniz-De Volder Correspondence, with Selections from the Correspondence Between Leibniz and Johann Bernoulli, translated and edited by P. Lodge, New Haven and London, Yale University Press.Google Scholar
  23. Look BC (2011) Leibniz’s theory of causation, in BC Look (Ed) The Continuum companion to Leibniz, London, Continuum Publishing Corporation, pp. 174–191.Google Scholar
  24. Papineau D (1977) The vis viva controversy: do meanings matter?. Studies in history and philosophy of science, 8, 2, pp. 111–142.CrossRefGoogle Scholar
  25. Puryear S (2012) Motion in Leibniz’s Middle Years: A Compatibilist Approach, in D. Garber, D. Rutherford, Oxford Studies in Early Modern Philosophy, vol. VI, Oxford, Clarendon Press, pp. 135–170.Google Scholar
  26. Ranea AG (1986) A priori, inercia y acción motriz en la dinámica de Leibniz. Revista de filosofía, 26–27, pp. 164–169.Google Scholar
  27. Roberts JT (2003) Leibniz on Force and Absolute Motion. Philosophy of Science, 70, pp. 553–573.MathSciNetCrossRefGoogle Scholar
  28. Suisky D (2009) Euler as Physicist. Springer, Berlin.zbMATHCrossRefGoogle Scholar
  29. Woolhouse RS (2000a) Leibniz’s collision rules for inertialess bodies indifferent to motion. History of philosophy quarterly, 17, pp. 143–157.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paolo Bussotti
    • 1
  1. 1.University of UdineUdineItaly

Personalised recommendations