Description of the Most Important Elements of Leibniz’s Planetary Theory

  • Paolo Bussotti
Part of the Science Networks. Historical Studies book series (SNHS, volume 52)


This chapter is divided into four parts according to an ideal division of the Tentamen. In the first part Leibniz dealt with harmonic circulation and introduced paracentric motion; in the second one he analysed the properties of paracentric motion; in the third one he dealt with the inverse square law and the elliptic movements of the planets; in the fourth one Leibniz provided a summary of his model. Every paragraph is divided into two subparagraphs: 1. Leibniz’s assertions; 2. commentaries.


Centrifugal Force Radius Vector Transverse Velocity Harmonic Motion Centripetal Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aiton EJ (1960) The celestial mechanics of Leibniz. Annals of Science, 16, 2, pp. 65–82. 11.
  2. Aiton EJ (1962) The celestial mechanics of Leibniz in the light of Newtonian criticism. Annals of Science, 18, 1, pp. 31–41.
  3. Aiton EJ (1964) The celestial mechanics of Leibniz: A new interpretation. Annals of Science, 20, 2, pp. 111–123.
  4. Aiton EJ (1972) The vortex theory of planetary motions. American Elsevier Publishing Company, New York.Google Scholar
  5. Bertoloni Meli D (1993) Equivalence and priority: Newton versus Leibniz. Clarendon Press, Oxford.Google Scholar
  6. Bussotti P, Pisano R (2014a) On the Jesuit Edition of Newton’s Principia. Science and Advanced Researches in the Western Civilization. Advances in Historical Studies, 3, 1, pp. 33–55.
  7. Bussotti P, Pisano R (2014b) Newton’s Philosophiae Naturalis Principia Mathematica “Jesuit” edition: The tenor of a huge work. Rendiconti Lincei Matematica e Applicazioni, 25, pp. 413–444.Google Scholar
  8. De Gandt F (1995) Force and Geometry in Newton’s Principia. Princeton University Press, Princeton.Google Scholar
  9. Gregory D (1702) Astronomiae physicae et geometricae elementa. Sheldonian Theatre, Oxford.Google Scholar
  10. Guicciardini N (1998). Did Newton use his calculus in the Principia? Centaurus, 40, 303–344.
  11. Guicciardini N (1999). Reading the Principia. The debate on Newton’s mathematical methods for natural philosophy from 1687 to 1736. Cambridge University Press, Cambridge.Google Scholar
  12. Guicciardini N (2009) Isaac Newton on Mathematical Certainty and Method, MIT Press, Cambridge (Mass.).Google Scholar
  13. Keill M (1714) Response de M Keill, M. D. Professeur d’Astronomie Savilien aux auteurs des Remarques sue le Different entre M. de Leibniz et M. Newton, publiées dans le Journal Litéraire de la Haye de Novembre et Decembre 1713. Journal Litéraire, 4, pp. 319–352.Google Scholar
  14. Leibniz GW (1684, 1858, 1962) Nova Methodus pro Maximis et Minimis, itemque Tangentibus, quae nec fractas nec irrationales quantitates moratur, et singulare pro illis calculi genus. In Leibniz ([1849–1863], 1958), V volume, pp. 220–226.Google Scholar
  15. Leibniz GW (1689, 1860, 1962) Tentamen de Motuum Coelestium Causis (Erste Bearbeitung). In Leibniz ([1849–1863], 1962), VI volume, pp. 144–161.Google Scholar
  16. Leibniz GW (1690?, 1860, 1962) Tentamen de Motuum Coelestium Causis (Zweite Bearbeitung). In Leibniz ([1849–1863], 1962), VI volume, pp. 161–187.Google Scholar
  17. Leibniz GW (1690a, 1860, 1962), Beilage to the Tentamen (letter to Huygens). In Leibniz ([1849–1863], 1962), VI volume, pp. 187–193.Google Scholar
  18. Leibniz GW (1706, 1860, 1962) Illustratio Tentaminis de Motuum Coelestium Causis, Pars I et Pars II plus Beilage. In Leibniz ([1849–1863], 1962), VI volume, pp. 254–280.Google Scholar
  19. Newton I (1712?, 1850) Epistola cujusdam ad amicum, in Correspondence of Sir isaac Newton and Professor Cotes, including letters of other eminent men (Ed. J Edleston). Parker, London, pp. 308–314.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paolo Bussotti
    • 1
  1. 1.University of UdineUdineItaly

Personalised recommendations