Skip to main content

Convolutional LSTM Networks for Subcellular Localization of Proteins

  • Conference paper
  • First Online:
Algorithms for Computational Biology (AlCoB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9199))

Included in the following conference series:

Abstract

Machine learning is widely used to analyze biological sequence data. Non-sequential models such as SVMs or feed-forward neural networks are often used although they have no natural way of handling sequences of varying length. Recurrent neural networks such as the long short term memory (LSTM) model on the other hand are designed to handle sequences. In this study we demonstrate that LSTM networks predict the subcellular location of proteins given only the protein sequence with high accuracy (0.902) outperforming current state of the art algorithms. We further improve the performance by introducing convolutional filters and experiment with an attention mechanism which lets the LSTM focus on specific parts of the protein. Lastly we introduce new visualizations of both the convolutional filters and the attention mechanisms and show how they can be used to extract biologically relevant knowledge from the LSTM networks.

S.K. Sønderby and C.K. Sønderby—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://abi.inf.uni-tuebingen.de/Services/MultiLoc/multiloc_dataset.

  2. 2.

    http://download.igb.uci.edu/.

  3. 3.

    http://nebc.nox.ac.uk/bioinformatics/docs/blastpgp.html.

  4. 4.

    https://github.com/skaae/nntools.

References

  1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic acids Res. 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly Learning to Align and Translate. arXiv preprint arXiv:1409.0473 (Sep 2014)

  3. Baldi, P., Brunak, S., Frasconi, P.: Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15(11), 937–946 (1999)

    Article  Google Scholar 

  4. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N., Warde-Farley, D., Bengio, Y.: Theano: new features and speed improvements, November 2012. arXiv preprint arXiv:1211.5590

  5. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  6. Blum, T., Briesemeister, S., Kohlbacher, O.: MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction. BMC bioinform. 10, 274 (2009)

    Article  Google Scholar 

  7. Briesemeister, S., Blum, T., Brady, S., Lam, Y., Kohlbacher, O., Shatkay, H.: SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins. J. Proteome Res. 8(11), 5363–5366 (2009)

    Article  Google Scholar 

  8. Cunn, Y.L., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Handwritten digit recognition with a back-propagation network. In: Lippmann, R., Moody, J., Touretzky, D. (eds.) Advances in neural information processing systems. pp. 396–404 (1990)

    Google Scholar 

  9. Dahl, G., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)

    Article  Google Scholar 

  10. Di Lena, P., Nagata, K., Baldi, P.: Deep architectures for protein contact map prediction. Bioinformatics 28(19), 2449–2457 (2012)

    Article  Google Scholar 

  11. Emanuelsson, O., Brunak, S., von Heijne, G., Nielsen, H.: Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2(4), 953–971 (2007)

    Article  Google Scholar 

  12. Goldberg, T., Hamp, T., Rost, B.: LocTree2 predicts localization for all domains of life. Bioinformatics 28(18), i458–i465 (2012)

    Article  Google Scholar 

  13. Graves, A.: Supervised sequence labelling with recurrent neural networks. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  14. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1764–1772 (2014)

    Google Scholar 

  15. Graves, A.: Generating sequences with recurrent neural networks, (2013). arXiv preprint arXiv:1308.0850

  16. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992)

    Article  Google Scholar 

  17. Hochreiter, S., Schmidhuber, J., Elvezia, C.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Höglund, A., Dönnes, P., Blum, T., Adolph, H.W., Kohlbacher, O.: MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 22(10), 1158–1165 (2006)

    Article  Google Scholar 

  19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization, December 2014. arXiv preprint arXiv:1412.6980

  20. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K. (eds.) Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  21. Magnan, C., Baldi, P.: SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning, and structural similarity. Bioinformatics 30(18), 1–6 (2014)

    Article  Google Scholar 

  22. Magrane, M. et al.: UniProt Consortium: Uniprot knowledgebase: a hub of integrated protein data. Database 2011, bar009 (2011)

    Google Scholar 

  23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  24. Petersen, T., Brunak, S., von Heijne, G., Nielsen, H.: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8(10), 785–786 (2011)

    Article  Google Scholar 

  25. Prlić, A., Domingues, F.S., Sippl, M.J.: Structure-derived substitution matrices for alignment of distantly related sequences. Protein Eng. 13, 545–550 (2000)

    Article  Google Scholar 

  26. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. Signal Process. 45(11), 2673–2681 (1997)

    Google Scholar 

  27. Sutskever, I., Vinyals, O., Le, Q.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  28. Thomsen, M.C.F., Nielsen, M.: Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res. 40, W281–W287 (2012)

    Article  Google Scholar 

  29. Van Der Maaten, L.J.P., Hinton, G.E.: Visualizing high-dimensional data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  30. Xiong, H.Y., Alipanahi, B., Lee, L.J., Bretschneider, H., Merico, D., Yuen, R.K.C., Hua, Y., Gueroussov, S., Najafabadi, H.S., Hughes, T.R., Morris, Q., Barash, Y., Krainer, A.R., Jojic, N., Scherer, S.W., Blencowe, B.J., Frey, B.J.: The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2014)

    Article  Google Scholar 

  31. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization (2014). arXiv preprint arXiv:1409.2329

  32. Zaremba, W., Kurach, K., Fergus, R.: Learning to Discover Efficient Mathematical Identities. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, pp. 1278–1286, June 2014

    Google Scholar 

  33. Zaremba, W., Sutskever, I.: Learning to Execute, October 2014. arXiv preprint arXiv:1410.4615

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Kaae Sønderby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sønderby, S.K., Sønderby, C.K., Nielsen, H., Winther, O. (2015). Convolutional LSTM Networks for Subcellular Localization of Proteins. In: Dediu, AH., Hernández-Quiroz, F., Martín-Vide, C., Rosenblueth, D. (eds) Algorithms for Computational Biology. AlCoB 2015. Lecture Notes in Computer Science(), vol 9199. Springer, Cham. https://doi.org/10.1007/978-3-319-21233-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21233-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21232-6

  • Online ISBN: 978-3-319-21233-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics