Skip to main content

Organic Electrochemistry in the USSR

  • Chapter
Electrochemistry in a Divided World

Abstract

Organic electrochemistry (in the Russian scientific literature “electrochemistry of organic compounds”, “EKhOS”) describes the whole field. In addition to electroorganic chemistry (synthesis, organic reactivity, etc), it includes also mechanisms of electrode processes including kinetics of separate stages, electrode and pre-electrode effects, combined spectral and electrochemical techniques, etc., as applied to a variety of objects—from simple molecules to complex natural compounds. The article provides an overview of works in all of these areas performed in the EKhOS's centres of the former USSR: in Moscow, Kazan, Riga, Tula, Novocherkassk, etc. In the second part of the article the author shares over 30-years experience at the Moscow's All-Union Scientific-Research Institute of Vitamins-from the first work with home-made polarograph, studying the mechanisms of reactions, to large-scale industrial electrosynthesis. Along with biographical material, author describes also the environment in which soviet scientists lived and worked in those years.

An erratum of the original chapter can be found under DOI 10.1007/978-3-319-21221-0_17

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-21221-0_17

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    He performed the thesis “Study of polarizability of complex molecules” under the supervision of Yakov Kivovich Syrkin, a member of the USSR Academy of Sciences, one of the leading Soviet theoretical chemists. In 1951, Syrkin was accused of “cosmopolitanism and propaganda of ideologically misguided resonance theory” and, together with Frumkin , of underestimation of the “decisive contribution of Russian scientists to physical chemistry” (due to their joint article in the Great Soviet Encyclopedia). This was followed by dismissal of Syrkin from the Karpov Institute of Physical Chemistry and by dismissal of Frumkin as director of the Institute of Physical Chemistry of the USSR Academy of Sciences.

  2. 2.

    Here and below we use the system of abbreviated notation of electrode reactions (see Appendix). Thus, a complete schema of reactions (9.2) is written as “–e(d)(h)a–e–p,” where “–e,h,” and “–p” are transfers of electron, hydrogen, and proton, “d” and “a” are C–N bond dissociation and C–C bond association, and in the brackets (d)(h) are parallel stages.

  3. 3.

    M.E. Vol’pin (1923–1996) was a Dr. chem. sci. (1959), an academician (1987), and the director of INEOS (1988–1996). Vol’pin got a contract at INEOS only as a result of persistent efforts of Kursanov in 1958, 3 years after he began work unofficially for free in Kursanov ’s laboratory, because of restrictions for persons of Jewish nationality (see [54]). I met them both during my unsuccessful application to INEOS in 1961 (see Sect. 9.2).

  4. 4.

    Other mechanisms suggested [3, 63] are ↑epe↓ap and ↑e↓apep with the participation of the initial substrate RH in a bimolecular step “a” (for the notation, see Appendix).

  5. 5.

    The “Knunyants ’s lactone” for acetobutyrolactone and “Knunyants ’s regrouping” are established terms in the literature.

  6. 6.

    This “closed” organization was also called NII-42: a number is assigned to each “closed” organization and in everyday use they were called “numbered enterprises,” “mailboxes,” or simply “boxes.”

  7. 7.

    Biographical material is taken from [95].

  8. 8.

    Biographical data for this section were mainly taken from the book [98].

  9. 9.

    Recall that the phenomenon itself and the method of ESR were discovered by Ye.K. Zavoysky in Kazan, KGU, in 1944.

  10. 10.

    According to the memoirs of A.P. Tomilov , Yu.M. Kargin proposed to use an acronym EKhOS in the title of national conferences [89].

  11. 11.

    Yan Pavlovich Stradyn in Russian transcription.

  12. 12.

    Ya.P. Stradyn and R.A. Gavar presented this material on the CITCE’s 14th meeting, Moscow, 19–25 August 1963 (as per Dr. V. Glezer). Their work [125, 126] on in situ EC-ESR of nitrofurans has been published about a year before that of the Kazan scientists [105]. Geske and Maki [127] are commonly considered the pioneers of the in situ EC-ESR. However, Alexander Galkin and coworkers in the Kharkov FT I (Kharkov Physics-Technical Institute) in 1957 [128] were the first to carry out in situ electrochemical generation in the ampule of an ESR spectrometer.

  13. 13.

    In a small room, in front of the cathedral library, we had worked together with Andrey Mirzabekov (1937–2003)—the future academician and director of V.A. Engel’gardt Institute of Molecular Biology USSR AS and future director of Biochip Technology Center at Argonne National Laboratory, USA. I worked on polarograph and Andrej on preparative chromatograph. The room was not equipped with ventilation and Nikolai Alekseevich asked us daily if there was any toxic contamination by mercury or solvent. Understanding our responsibility, Andrey and I worked neatly and carefully.

  14. 14.

    I had a bad experience with another academic institution, INEOS. In 1961, prior to the work assignment to VNIVI, on the recommendation from my brother, Stal’ Mairanovskii, I was invited for an interview by Dr. Zinaida Naumovna Parnes; she studied hydride transfer reactions. She gave me reprints of her articles and asked me to think about the application of electrochemistry. A few days later, in INEOS, I met Dr. Parnes and Dr. Mark Yefimovitch Vol’pin again to continue our discussion. They were satisfied with my interview and suggested I apply for employment to the Director, acad. A.N. Nesmeyanov and introduced me to D.N. Kursanov , corr. member of USSR AS, the head of their department. Kursanov signed my letter and wished me a bright future in INEOS. Just a week later, I had a call from Dr. Z. Parnes, and she asked me to come: INEOS’s “pervyy otdel” blocked my admission (about the pervyy otdel, or first department, see Sect. 9.2.8).

  15. 15.

    This forces to interrupt electrolysis during pH measurements [180] or completely abandon pH monitoring. Thus, electrolysis was conducted in a diaphragm-less cell with a platinated Pt anode under hydrogen bubbling to prevent the alkalinization of the catholyte [181].

  16. 16.

    The electrochemistry of carotenes and porphyrins was the topic of the Ph.D. theses of Askold Anatoliyevich Engovatov (carotenes) (1975) and Ichtior Muradovich Muratov (porphyrins) (1986).

  17. 17.

    We consider it advisable to divide reactions into three groups: (1) with slow and moderately fast cleavage 0 < k *d  < 103 s–1 (SMFR) and (2) fast 103 < k *d  < 1010 s–1 (FR) and (3) ultrafast cleavage (UFR) k *d  ≥ 1010 s–1 [225].

  18. 18.

    Equation (9.13) (without reference to [204, 231]) was later used by J.M. Savéant [232235].

  19. 19.

    Publications in Doklady AN SSSR had to be submitted by a member of the Academy of Sciences (academician).

  20. 20.

    The term “redox catalysis” [258] that is often used instead of HOMEC in the literature is inadequate, because it does not reflect the involvement of the electrode itself in the electrochemical reaction (stage “e”) and the homogeneous character of the ЕТ on the substrate (stage “e v ”). In additions, this term is widely applied to other phenomena. The involvement of the electrode is also not expressed by the term “homo-mediator system” [259]. Starting from Kobozev and Monblanova [260], the term “electrocatalysis” became accepted for heterogeneous electrode reactions, and the “homogeneous electrocatalysis,” HOMEC, involves both e and e v stages.

  21. 21.

    These studies are included in the Ph.D. thesis of Leonid Yu. Yusefovich (1978).

  22. 22.

    This hypothesis is supported by the first results of viscosity measurements in the pre-electrode layer at a distance of δ < 6 nm [274] using an idea of combined EC-AFM method [275]. After the symposium [275], Prof. Dieter Kolb introduced me to a group of scientists from Mainz, they invited me to hold a seminar and we had a joint project. Prof. Kolb followed it with great interest. I fondly and with gratitude remember this outstanding electrochemist (1942–2011).

  23. 23.

    This work became the basis of Ph.D. dissertation by Nina Fyodorovna Loginova (1977).

  24. 24.

    The materials given in this section were the object of a large number of “closed” USSR author’s certificates; they entered in the closed (not openly accessible) Ph.D. dissertations by Inna Alekseyevna Titova (1979) and Isaac Grigorjevich Gitlin (1985).

  25. 25.

    The pervyy otdel (first department) in the Soviet organizations oversaw the hiring of staff, travel abroad, access to information, foreign correspondence and publications, and use of typewriters and copiers (countering the “samizdat,” i.e., reprint of banned literature). The information about employees, their political views, etc., was also filed there.

References

  1. Faraday M (1834) Poggend Ann Phys Chem 33:348

    Google Scholar 

  2. Kolbe H (1849) Liebigs Ann Chem 69:257

    Article  Google Scholar 

  3. Beck F (1974) Electroorganische Chemie. Akademie-Verlag, Berlin

    Google Scholar 

  4. Schono T (1984) Electroorganic chemistry as a new tool in organic synthesis. Springer, Berlin

    Book  Google Scholar 

  5. Haber F (1898) Z Elektrochem 4:506

    Article  CAS  Google Scholar 

  6. Frumkin AN, Bagotskiy VS, Iofa ZA, Kabanov BN (1952) Kinetika elektrodnykh protsessov (The kinetics of the electrode processes). Lomonosov Moscow State University, Moscow

    Google Scholar 

  7. Mayranovskiy SG, Neiman MB (1951) Dokl AN SSSR 79:85

    Google Scholar 

  8. Levin ES, Fodiman ES (1954) Zh Fiz Khim 28:601

    CAS  Google Scholar 

  9. Tsfasman SB (1960) Elektronnye polarografy. Metallurgizdat, Moscow

    Google Scholar 

  10. Vyaselev MR, Nigmatullin RS (1972) Elektrokhimiya 8:1781

    CAS  Google Scholar 

  11. Zaretskiy LS (1970) Impulsnyy polarograficheskiy konzentratomer, Izd. Energiya, Moskow

    Google Scholar 

  12. Bruk BS (1972) Polarograficheskie Metody, Izd. Energiya, Moscow

    Google Scholar 

  13. Frumkin АN, Vasil’ev YuB (eds) (1966) Uspechi elektrokhimii organicheskikh soedineniy (Advances electrochemistry of organic compounds). Nauka, Moscow

    Google Scholar 

  14. Frumkin АN, Ershler AB (eds) (1969) Progres elektrokhimii organicheskikh soedineniy (Advances electrochemistry of organic compounds). Nauka, Moscow

    Google Scholar 

  15. Frumkin АN, Ershler AB (eds) (1971) Progres elektrokhimii organicheskikh soedineniy (Advances electrochemistry of organic compounds). Plenum Press, London

    Google Scholar 

  16. Frumkin АN, Feoktistov LG (eds) (1973) Progres elektrokhimii organicheskikh soedineniy. Elektrosintez i mekhanizm electroorganicheskikh reaktsiy (Electrosynthesis and mechanism of electro-organic reactions). Nauka, Moscow

    Google Scholar 

  17. Frumkin АN, Stradyn YaP, Feoktistov LG (eds) (1975) Progres elektrokhimii organicheskikh soedineniy. Elektrosintez i bioelektrokhimya (Electrosynthesis and bio-electrochemistry). Nauka, Moscow

    Google Scholar 

  18. Feoktistov LG (ed) (1980) Progres elektrokhimii organicheskikh soedineniy. Elektrosintez monomerov (Electrosynthesis of monomers). Nauka, Moscow

    Google Scholar 

  19. Tomilov AP (ed) (1983) Progres elektrokhimii organicheskikh soedineniy. Ion-radikaly v elektrodnykh protsesakh (Ion-radicals in electrode processes). Nauka, Moscow

    Google Scholar 

  20. Tomilov AP (ed) (1990) Progres elektrokhimii organicheskikh soedineniy. Elektrosintez. Electrodnye reaktsii s uchastiem organicheskich soedineniy (Electrode reactions with organic compounds). Nauka, Moscow

    Google Scholar 

  21. Damaskin BB (ed) (1985) Elektrodnye protsessy v rastvorakh organicheskikh soedineniy (Electrode processes in solutions of organic compounds). Mosk Univ, Moscow

    Google Scholar 

  22. Frumkin AN, Nekrasov LN (1959) Dokl AN SSSR 126:115

    Google Scholar 

  23. Butin KP, Kashin AN, Beletskaya IP, Reutov OA (1969) J Oranomet Chem 16:27

    Article  CAS  Google Scholar 

  24. Reutov OA, Beletskaya IP, Butin KP (1980) CH-acids. Pergamon Press, Oxford

    Google Scholar 

  25. Reutov OA, Beletskaya IP, Butin KP (1982) СН-kisloty. Nauka, Moscow

    Google Scholar 

  26. Magdesieva TV (2002) Ross Khim Zh 49:56

    Google Scholar 

  27. Mayranovskiy SG, Neiman MB (1952) Dokl AN SSSR 82:93

    Google Scholar 

  28. Mayranovskiy SG, Neiman MB (1952) Dokl AN SSSR 87:805

    Google Scholar 

  29. Mayranovskiy SG (1958) Dokl AN SSSR 120:1294

    Google Scholar 

  30. Mayranovskiy SG, Koutecky J, Hanuš V (1960) Zh Fiz Khim 34:651

    Google Scholar 

  31. Mayranovskiy SG, Koutecky J, Hanuš V (1962) Zh Fiz Khim 36:2010, 2621

    Google Scholar 

  32. Mayranovskiy SG, Koutecky J, Hanuš V (1963) Zh Fiz Khim 37:18

    Google Scholar 

  33. Mairanovskii SG (1966) Katalytitsheskiye i kinetisheskiye volny v polarographii. Nauka, Moscow

    Google Scholar 

  34. Mairanovskii SG (1968) Catalytic and kinetic waves in polarography. Plenum Press, New York, NY

    Book  Google Scholar 

  35. Mayranovskiy SG, Gonikberg MG, Opekunov AA (1958) Dokl AN SSSR 123:312

    Google Scholar 

  36. Polievktov MK, Mayranovskiy SG, Gonikberg MG (1967) Kinetik Katal 8:312

    Google Scholar 

  37. Mayranovskiy SG, Gaevskiy YK, Zhulin VM (1979) Dokl AN SSSR 248:647

    Google Scholar 

  38. Mayranovskiy SG (1971) Dvoynoy sloy i ego effekty v polarografii (Double electrical layer and his effects in polarography). Nauka, Moscow

    Google Scholar 

  39. Tomilov AP, Mayranovskiy SG, Fioshin MYa, Smirnov VA (1968) Elektrokhimiya оrganicheskikh soedineniy (Electrochemistry of organic compounds). Khimiya, Leningrad

    Google Scholar 

  40. Mayranovskiy SG, Stradyn YaP, Bezuglyy VD (1975) Polarografiya v оrganicheskoy khimii (Polarography in organic chemistry). Khimiya, Moscow

    Google Scholar 

  41. Mayranovskiy SG, Bergelson LD (1960) Z Phys Chem 34:236

    Google Scholar 

  42. Mayranovskiy SG, Fainzilberg AA, Novikov SS, Klimova VA (1959) Dokl AN SSSR 125:351

    Google Scholar 

  43. Mayranovskiy SG, Petrosyan VA (1966) Elektrokhimiya 2:115

    Google Scholar 

  44. Petrosyan VA, Mayranovskiy SG, Slovetskiy VI, Fainzilberg AA (1968) Izv AN SSSR Otd Khim Nauk 4:928, 8:1721

    Google Scholar 

  45. Petrosyan VA, Mayranovskiy SG, Slovetskiy VI, Fainzilberg AA (1969) Izv AN SSSR Otd Khim Nauk 2390

    Google Scholar 

  46. Petrosyan VA, Nijazimbetov ME, Shevelev VA, Semenov VV, Fainzilberg AA (1982) Izv AN SSSR Otd Khim Nauk 2747

    Google Scholar 

  47. Petrosyan VA, Nijazimbetov ME (1987) Izv AN SSSR Otd Khim Nauk 603

    Google Scholar 

  48. Petrosyan VA, Nijazimbetov ME (1988) Izv AN SSSR Otd Khim Nauk 368

    Google Scholar 

  49. Petrosyan VA (1995) Izv AN SSSR Otd Khim Nauk 1411

    Google Scholar 

  50. Petrosyan VA (1998) Some aspects of development in direct cathodic deprotonation. In: Torii S (ed) Novel trends in electroorganic synthesis. Springer, Tokyo, p 417

    Chapter  Google Scholar 

  51. Petrosyan VA, Nijazimbetov ME (1989) Usp Khim 58:1105

    Article  CAS  Google Scholar 

  52. Elinson MN, Nasybullin RF, Nikishin GI (2013) J Electrochem Soc 160:G3053

    Article  CAS  Google Scholar 

  53. Vol’pin ME, Zhdanov SI, Kursanov DN (1957) Dokl AN SSSR 112:264

    Google Scholar 

  54. Zaitseva EA (2000) Khimia i Zhiz’n, No 38. http://www.chem.msu.ru/rus/history/acad/volpin.html

  55. Vol’pin ME, Shur VB (1966) Nature 209:1236

    Article  Google Scholar 

  56. Levitin IYa, Volpin ME (1972) Izv AN SSSR Otd Khim Nauk 2101

    Google Scholar 

  57. Perevalova EG, Gubin SP, Smirnova SA, Nesmeyanov AN (1962) Dokl AN SSSR 147:384

    CAS  Google Scholar 

  58. Denisovich LI, Gubin SP (1977) Usp Khim 46:50

    Article  CAS  Google Scholar 

  59. Knunyants IL, Gambaryan NP (1954) Usp Khim 23:781

    CAS  Google Scholar 

  60. Knunyants IL, Vyazankin NS (1957) Dokl AN SSSR 113:112

    CAS  Google Scholar 

  61. Knunyants IL, Vyazankin NS (1957) Izv AN SSSR Otd Khim Nauk 238

    Google Scholar 

  62. Baizer MM (1964) J Electrochem Soc 111:215

    Article  CAS  Google Scholar 

  63. Baizer MM (1983) Electrolytic reductive coupling. In: Baizer MM, Lund H (eds) Organic electrochemistry. Marcel Dekker, New York, NY, p 639

    Google Scholar 

  64. Rozhkov IN, Bukhtiyarov AV, Kuleshova ND, Knunyants IL (1970) Dokl AN SSSR 193:1322

    CAS  Google Scholar 

  65. Rozhkov IN, Bukhtiyarov AV, Knunyants IL (1972) Izv AN SSSR Otd Khim Nauk 1130

    Google Scholar 

  66. Simons JH (1949) J Electrochem Soc 95:47

    Article  CAS  Google Scholar 

  67. Rozhkov IN (1976) Usp Khim 45:1222

    Article  CAS  Google Scholar 

  68. Rozhkov IN, Shreider VA (1979) Dokl AN SSSR 245:403

    Google Scholar 

  69. Rozhkov IN, Shreider VA (1980) Dokl AN SSSR 250:396

    CAS  Google Scholar 

  70. Fuchigami T (2001) In: Lund H, Hammerich O (eds) Organic electrochemistry, 4th edn. Dekker, New York, NY, p 1035

    Google Scholar 

  71. Fuchigami T, Tajima T (2005) J Fluor Chem 126:181

    Article  CAS  Google Scholar 

  72. Sawamura T, Takahashi K, Inagi S, Fuchigami T (2012) Angew Chem Intern Ed 51:4413

    Article  CAS  Google Scholar 

  73. Strelets VV, Tsarev VN, Efimov ON (1981) Dokl AN SSSR 259:646

    CAS  Google Scholar 

  74. Strelets VV, Tsarev VN (1984) Kinetika i Kataliz 25:821

    CAS  Google Scholar 

  75. Strelets VV, Mamedjarova IA, Nefedova MN et al (1991) J Electroanal Chem 310:179

    Article  CAS  Google Scholar 

  76. Bard AJ, Garcia E, Kukharenko SV, Strelets VV (1993) Inorg Chem 32:3528

    Article  CAS  Google Scholar 

  77. Benderskiy VA, Krivenko AG (1990) Usp Khim 59:3

    Google Scholar 

  78. Kurmaz VA, Krivenko AG, Zlotsky SS (2003) Dokl AN 391:353

    Google Scholar 

  79. Krivenko AG, Kurmaz VA (2006) Elektrokhimiya 42:131

    Google Scholar 

  80. Fioshin MYa, Kamneva AI (1960) Khim Prom 5:359

    Google Scholar 

  81. Fioshin MYa, Kazakova LI (1963) Khim Prom 10:760

    Google Scholar 

  82. Fioshin MYa, Avrutskaya IA (1967) Elektrokhimiya 5:1003

    Google Scholar 

  83. Kornienko AG, Mirkind LA, Fioshin MYa (1969) Elektrokhimiya 3:1288

    Google Scholar 

  84. Mirkind LA (1975) Usp Khim 44:2088

    Article  CAS  Google Scholar 

  85. Avrutskaya IA, Fioshin MYa (1969) Zh Prikl Khim 2294

    Google Scholar 

  86. Fioshin MYa, Avrutskaya IA (1975) Usp Khim 44:2067

    Google Scholar 

  87. Avrutskaya IA, Fioshin MYa, Mulina TE (1975) Elektrokhimiya 11:1260

    Google Scholar 

  88. Bezuglyy VD, Ekel VA, Fioshin MYa (1970) Elektrokhimiya 6:1778

    Google Scholar 

  89. Tomilov AP (2009) Moy put’ v nauke. Izd. Khoruzhevskiy, Moscow

    Google Scholar 

  90. Smirnov YuD, Shaidulina GF, Tomilov AP (1990) Elektrokhimiya 26:26

    Google Scholar 

  91. Kharlamova TA, Tomilov AP, Klimov VA (1980) Khim Prom 200

    Google Scholar 

  92. Varshavskiy SD, Tomilov AP, Smirnov YD (1962) Zh Vses Khim Obshch Mendeleeva 7:598

    Google Scholar 

  93. Kargin YM, Budnikova YH, Martynov BI, Turygin VV, Tomilov AP (2001) J Electroanal Chem 507:157

    Article  CAS  Google Scholar 

  94. Ilchibaeva IB, Kagan ESh, Tomilov AP (2002) Russ J Electrochem 38:1045

    Google Scholar 

  95. Sodruzhestvo Vnipimovtsev. http://www.proza.ru/2011/09/30/804

  96. Freydlin GN, Kovsman EP, Fioshin MYa et al (1968) Avt Svidet N 265881

    Google Scholar 

  97. Tarchanov GA, Solovyeva LI, Kovsman EP et al (1971) Elektrokhimiya 7:288

    Google Scholar 

  98. Kargin YuM, Budnikov GK (2006) Ocherki istorii elektrokhimii organicheskich soedineniy v Kazani (Studies on the history of electrochemistry of organic compounds in Kazan). Kazan State University, Kazan

    Google Scholar 

  99. Kitaev YuP, Arbuzov AE (1957) Dokl AN SSSR 113:577

    Google Scholar 

  100. Kitaev YuP, Arbuzov AE (1957) Izv AN SSSR Otd Khim Nauk 1037

    Google Scholar 

  101. Kitaev YuP, Budnikov GK (1964) Dokl AN SSSR, 154:1379

    Google Scholar 

  102. Kitaev YuP, Budnikov GK (1964) Izv AN SSSR Otd Khim Nauk 978

    Google Scholar 

  103. Kitaev YuP, Budnikov GK (1967) Izv AN SSSR Otd Khim Nauk 562

    Google Scholar 

  104. Kitaev YP, Bazykin BI (1974) Gydrazony. Nauka, Moscow

    Google Scholar 

  105. Vylegzhanina NN, Il’yasov AV, Kitaev YP (1965) Zh Strukt Khim 6:153

    CAS  Google Scholar 

  106. Vafina AA, Il’yasov AV, Morozova ID et al (1972) Bull Acad Sci USSR Chem Sci 21:1676

    Article  Google Scholar 

  107. Il’yasov AV, Kargin YuM, Levin YaA et al (1966) Bull Acad Sci USSR Div Chem Sci 15:561

    Google Scholar 

  108. Il’yasov AV, Kargin YuM, Levin YaA et al (1968) Izv AN SSSR Otd Khim Nauk 740

    Google Scholar 

  109. Il’yasov AV, Kargin YuM, Levin YaA, et al (1968) Izv AN SSSR Otd Khim Nauk 1030

    Google Scholar 

  110. Kargin YM, Budnikova YG (2001) Zh Obshch Khim 71:1472

    Google Scholar 

  111. Lisitsyn YA, Busygina NV, Kargin YM (2005) Ross Khim Zh 49:121

    CAS  Google Scholar 

  112. Stradyn YP, Giller SA (1958) Izv AN Latv SSR 10:121

    Google Scholar 

  113. Stradyn YaP, Giller SA, Yurjev Yu (1959) Dokl AN SSSR 129:816

    Google Scholar 

  114. Stradyn YaP, the foreword by SA Giller (1961) Polarografia Organicheskich Nitro-Soedineniy. Izd AN Latv SSR, Riga

    Google Scholar 

  115. Tutane IK, Stradyn YaP et al (1971) Zh Obshch Khim 41:1912

    Google Scholar 

  116. Vegnere VYa, Stradyn YaP et al (1972) Zh Obshch Khim 41:1895

    Google Scholar 

  117. Stradyn YaP, Tutane IK, et al (1966) Dokl AN SSSR 166:631

    Google Scholar 

  118. Glezer V, Stradins J et al (1983) Electrochim Acta 28:87

    Article  CAS  Google Scholar 

  119. Medynya BA, Glezer VT et al (1986) Zh Obshch Khim 56:2115

    Google Scholar 

  120. Kadysh VP, Ogle YaV et al (1982) Izv AN Latv SSR Ser Khim 5:672

    Google Scholar 

  121. Konopleva NR, Stradyn YaP et al (1983) Izv AN Latv SSR Ser Khim 6:678

    Google Scholar 

  122. Stradins J, Ogle J, Kadysh V et al (1987) J Electroanal Chem 226:103

    Article  CAS  Google Scholar 

  123. Gasanov BR, Stradyn YaP (1976) Zh Obshсh Khim 46:2588

    Google Scholar 

  124. Stradyn YaP, Gasanov BR et al (1976) Zh Org Khim 12:1949

    Google Scholar 

  125. Gavar RA, Stradyn YaP, Giller SA (1964) Izv AN Latv SSR Ser Khim 3:381

    Google Scholar 

  126. Gavar RA, Stradyn YaP (1964) Doklady AN SSSR 157:1424

    Google Scholar 

  127. Geske AН, Maki DН (1960) J Am Chem Soc 82:2671

    Article  CAS  Google Scholar 

  128. Galkin AA, Shanfarov YaL, Stefanshina AV (1957) Zh Exper Teor Fiz 32:1581

    Google Scholar 

  129. Stradins J (1993) Latvijas Zinatnu akademijas akademikis. Latv Akad Bibl, Riga

    Google Scholar 

  130. (2013) A festschrift in honour of Janis Stradins on his 80th birthday. Zinatne, Riga

    Google Scholar 

  131. Smirnov VA (1970) Vosstanovlenie amalgamami. Khimiya, Leningrad

    Google Scholar 

  132. Kagan ESh, Zhukova IYu et al (1992) Khim Heterotsykl Soed N1, p 73

    Google Scholar 

  133. Kagan ES, Zhukova IY et al (1993) Zh Organ Khim 29:751

    Google Scholar 

  134. Kagan ES, Zhukova IY et al (1996) Elektrokhimiya 32:100

    Google Scholar 

  135. Kagan ES, Zhukova IY et al (2000) Elektrokhimiya 36:224

    Google Scholar 

  136. Bezuglyy VD et al (1980) In: Feoktistov LG (ed) Progres elektrokhimii organicheskikh soedineniy. Elektrosintez monomerov (Electrosynthesis of monomers). Nauka, Moscow, p 161

    Google Scholar 

  137. Bezuglyy VD, Alekseeva TA (1990) Elektrokhimya polimerov. Osnova, Kharkov

    Google Scholar 

  138. Shapoval GS, Lipatova TE (1977) Elektrokhimicheskoe initsiirovanie polimerizatsii. Naukova Dumka, Kiev

    Google Scholar 

  139. Pud AA, Shapoval GS (1995) Macromol Rep A32 (Suppl 5&6):629

    Google Scholar 

  140. Pud AA, Shapoval GS (1995) Electrochim Acta 40:1157

    Article  CAS  Google Scholar 

  141. Sokolskiy DV (1962) Gidrirovanie v rastvorakh. Nauka, Alma-Ata

    Google Scholar 

  142. Sokolskiy DV (1981) Vvedenie v teoriyu geterogennogo katalysa. Nauka, Moscow

    Google Scholar 

  143. Kirilyus IV (1981/1990) Elektrokatalitisheskoe Gidrirovanie. Nauka, Alma-Ata

    Google Scholar 

  144. Stromberg AG, Reinus LM (1946) Zh Obshch Khim 16:1431

    CAS  Google Scholar 

  145. Zaiganova LS, Stromberg AG (1955) Dokl AN SSSR 105:747

    Google Scholar 

  146. Voronova KR, Stromberg AG (1959) Zh Obshch Khim 29:3117

    CAS  Google Scholar 

  147. Stromberg AG (1993) Zh Anal Khim 48:939

    CAS  Google Scholar 

  148. Koltgof IM, Lingeyn DD (1948) Polarografiya. Goskhimizdat, Moscow (transl of Kolthoff IM, Lingane I (1942) Polarography. Interscience, New York, NY)

    Google Scholar 

  149. Mayranovskiy VG, Yanotovskiy MTs (1962) Mater 2 Sovetsch po polarografii. Kazan Univ, Kazan, p 91

    Google Scholar 

  150. Mayranovskiy VG, Yanotovskiy MTs (1962) Patent USSR 158139/02.03.1962

    Google Scholar 

  151. Mayranovskiy VG, Yanotovskiy MTs (1963) Zh Fiz Khim 37:705

    Google Scholar 

  152. Yanotovskiy MTs, Mayranovskiy VG, Samokhvalov GI (1964) Zh Fiz Khim 38:2995

    Google Scholar 

  153. Yanotovskiy MTs, Mayranovskiy VG (1965) Zh Anal Khim 20:221

    Google Scholar 

  154. Mayranovskiy VG, Samokhvalov GI (1964) Zh Vses Khim Obshch im Mendeleeva 9:358

    Google Scholar 

  155. Mayranovskiy VG (1964) Med Promyshl SSSR 10:37

    Google Scholar 

  156. Wawzonek S, Blaha E, Berkey R et al (1955) J Electrochem Soc 102:235

    Article  CAS  Google Scholar 

  157. Given PH (1958) J Chem Soc 2684

    Google Scholar 

  158. Mayranovskiy VG, Samokhvalov GI (1965) IX.Vses S’ezd Imeni DI Mendeleeva, Ref Dokl, Sekzya analyt khim No 8, 68

    Google Scholar 

  159. Bogoslovskiy NA, Mayranovskiy VG, Kuznetsova EN (1968) Khim Farm Zh 5:39

    Google Scholar 

  160. Yakovlev VA (1965) Kinetika fermentativnogo katalisa (Kinetics of enzymatic catalysis). Nauka, Moscow

    Google Scholar 

  161. Yakovlev VA (1967) Mekhanismy dychaniya, fotosinteza i fiksatsii azota (Mechanisms of respiration, photosynthesis and nitrogen fixation). Nauka, Moscow

    Google Scholar 

  162. Skobets EM, Kavetskiy NS (1949) Zavod Lab 15:1299

    CAS  Google Scholar 

  163. Mayranovskiy SG, Barashkova NV, Volkensteyn YB (1965) Elektrokhimiya 1:72

    Google Scholar 

  164. Zosimovitsch DP, Zimmergakl VA, Chaimovitsch RS (1948) Zavod Lab 14:151

    Google Scholar 

  165. Teretschenko PN (1948) Zavod Lab 14:1319

    Google Scholar 

  166. Čermak V, Hanuš V (1948) Czech Pat P 3181-48/22.10.48

    Google Scholar 

  167. Mayranovskiy VG, Samokhvalov GI (1966) Zh Anal Khim 21:210

    Google Scholar 

  168. Wolf D (1963) J Electroanal Chem 5:186

    CAS  Google Scholar 

  169. Mayranovskiy VG (1966) PhD thesis, IELAN SSSR, p 32

    Google Scholar 

  170. Mayranovskiy VG (1969) Elektrokhimiya 5:663

    Google Scholar 

  171. Mayranovskiy VG (1965) Zavod Lab 31:1187

    Google Scholar 

  172. Mayranovskiy VG, Dmitriev IB, Engovatov AA (1970) Novosti EKhOS. Kazan, p 85

    Google Scholar 

  173. Mayranovskiy VG (1980) Dr chem thesis, Lomonosov University Moscow, Moscow

    Google Scholar 

  174. Mayranovskiy VG, Mamaev VM, Ponomarev GV et al (1974) Zh Obshch Khim 44:2508

    Google Scholar 

  175. Mayranovskiy VG, Engovatov AA, Samokhvalov GI (1970) Zh Anal Khim 25:2235

    Google Scholar 

  176. Vlček A (1955) Coll Czech Chem Commun 20:988

    Article  Google Scholar 

  177. Mayranovskiy VG, Engovatov AA, Samokhvalov GI (1970) Zh Organ Khim 6:632

    Google Scholar 

  178. Mayranovskiy VG, Engovatov AA (1975) Elektrokhimiya 11:461

    Google Scholar 

  179. Nicholson R, Shain I (1965) Anal Chem 37:178

    Article  CAS  Google Scholar 

  180. Gourley R, Grimshaw J, Millar P (1970) J Chem Soc, C 2318

    Google Scholar 

  181. Saveant J, Khac Binh S (1974) J Electroanal Chem 50:417

    Article  CAS  Google Scholar 

  182. Mayranovskiy VG, Korsunov VA, Engovatov AA (1972) Novye Issledovaniya v polarografii. Shtiinza, Kishenëv, p 345

    Google Scholar 

  183. Mayranovskiy VG, Engovatov AA, Ioffe NT et al (1976) Elektrokhimiya 12:866

    Google Scholar 

  184. Mayranovskiy VG (1962) Avt sert USSR 168510/18.12.1962

    Google Scholar 

  185. Mayranovskiy VG (1963) Avt sert USSR 172108/20.08.1963

    Google Scholar 

  186. Takahashi R, Tachi I (1962) Agric Biol Chem (Japan) 26:777

    Article  CAS  Google Scholar 

  187. Takahashi R, Tachi I (1965) Abhandl Deutsch Akad Wiss. Kl Medizin, Berlin, p 589

    Google Scholar 

  188. Mayranovskiy VG, Samokhvalov GI (1966) Org React (Tartu, USSR) 3:117

    Google Scholar 

  189. Mayranovskiy VG, Samokhvalov GI (1966) Elektrokhimiya 2:717

    Google Scholar 

  190. Mayranovskiy VG, Vakulova LA, Samokhvalov GI (1967) Elektrokhimiya 3:23

    Google Scholar 

  191. Mayranovskiy VG, Vakulova LA, Ioffe NT et al (1977) Khim Farm Zh 11:111

    Google Scholar 

  192. Mayranovskiy VG, Obol’nikova EA, Volkova OI, Samokhvalov GI (1970) Dokl AN SSSR 195:1121

    Google Scholar 

  193. Mayranovskiy VG, Volkova OI, Obol’nikova EA, Samokhvalov GI (1971) Dokl AN SSSR 199:829

    Google Scholar 

  194. Mayranovskiy VG, Veinberg AYa, Samokhvalov GI (1966) Avt sert USSR 222353/01.12.1966

    Google Scholar 

  195. Veinberg AYa, Mayranovskiy VG, Samokhvalov GI (1968) Zh Obshch Khim 38:667

    Google Scholar 

  196. Gourcy JG, Hodler M, Terem B et al (1976) J Chem Soc Chem Commun 779

    Google Scholar 

  197. Lund H, Doupeux H, Michel MA, Simonet J (1974) Electrochim Acta 19:629

    Article  CAS  Google Scholar 

  198. Mairanovsky VG (1975) Electrochim Acta 20:807

    Article  Google Scholar 

  199. Corey EJ, Tius M (1977) Tetrah Lett 18:2081

    Google Scholar 

  200. Satyanarayana K, Chidambaram N, Chandrasekaran S (1989) Synth Commun 19:2159

    Article  CAS  Google Scholar 

  201. Mayranovskiy VG, Samokhvalov GI (1965) Elektrokhimiya 1:996

    Google Scholar 

  202. Titova IA, Ershler AB, Mayranovskiy VG, Alekseev VN (1979) Elektrokhimiya 15:544

    CAS  Google Scholar 

  203. Mairanovsky VG, Titova IA (1988) Electrochemical behavior of Vitamins D and related compounds. Proceedings of the symposium on the analysis of steroids, Sopron, Hungary, 20–22 October 1987, pp 533–541

    Google Scholar 

  204. Mayranovskiy VG (1985) Dokl AN SSSR 284:386

    Google Scholar 

  205. Mairanovsky VG, Engovatov AA, Ioffe NT, Samokhvalov GI (1975) J Electroanal Chem 66:123

    Article  Google Scholar 

  206. Kuta E (1964) Science 144:1130

    Article  CAS  Google Scholar 

  207. Kuta E, Ju M (1967) Lipids 9:411

    Article  Google Scholar 

  208. Ioffe NT, Engovatov AA, Mayranovskiy VG (1975) Zh Obshch Khim 45:951

    CAS  Google Scholar 

  209. Mayranovskiy VG, Engovatov AA, Ioffe NT, Samokhvalov GI (1976) Khim Farm Zh 10:105

    Google Scholar 

  210. Ioffe NT, Engovatov AA, Mayranovskiy VG (1976) Zh Obshch Khim 46:1639

    Google Scholar 

  211. Engovatov AA, Ioffe NT, Mayranovskiy VG (1977) Zh Obshch Khim 47:2616

    CAS  Google Scholar 

  212. Mayranovskiy VG, Marinova RI, Ioffe NT et al (1976) Bioorg Khim 2:1266

    Google Scholar 

  213. Fuhrhop J (1975) In: Smith KM (ed) Porphyrins and metalloporphyrins. Elsevier, New York, NY, p 593

    Google Scholar 

  214. Felton R (1978) In: Dolphin D (ed) The porphyrins, vol 5. Academic Press, New York, NY, p 53

    Chapter  Google Scholar 

  215. Davis D (1978) In: Dolphin D (ed) The porphyrins, vol 5. Academic Press, New York, NY, p 127

    Chapter  Google Scholar 

  216. Tarasevich MR, Radyushkina KA (1982) Kataliz i elektrokataliz porfyrinami. Nauka, Moscow

    Google Scholar 

  217. Felton R, Linschitz H (1966) J Am Chem Soc 88:1113

    Article  CAS  Google Scholar 

  218. Mayranovskiy VG, Mamaev VM, Ponomarev GV et al (1968) Novosti elektrokhimii organicheskikh soedinenenii. Nauka, Moscow, p 72

    Google Scholar 

  219. Mairanovskiy VG, Mamaev VM, Ponomarev GV et al (1969) Org React (Tartu, USSR) 6:55

    Google Scholar 

  220. Mayranovskiy VG, Ioffe NT, Marinova RI et al (1980) Zh Obshch Khim 50:707

    Google Scholar 

  221. Ioffe NT, Muratov IM, Mayranovskiy VG (1990) Zh Obshch Khim 60:678

    CAS  Google Scholar 

  222. Morozova IS, Mayranovskiy VG, Smirnov BR et al (1981) Dokl AN SSSR 258:895

    CAS  Google Scholar 

  223. Mayranovskiy VG (1987) In: Enikolopyan NS (ed) Porfyriny: spektroskopiya, elektrokhimiya, primeneniya. Nauka, Moscow, pp 127–181

    Google Scholar 

  224. von Stackelberg M, Stracke W (1949) Z Elektrochem 53:118

    Google Scholar 

  225. Mairanovsky VG (1981) J Electroanal Chem 125:231

    Article  Google Scholar 

  226. Wentworth W, George R, Keith H (1969) J Chem Phys 51:1791

    Article  CAS  Google Scholar 

  227. Steelhammer J, Wentworth W (1969) J Chem Phys 51:1802

    Article  CAS  Google Scholar 

  228. Kojima T, Tanaka Y, Satouchi M (1976) Anal Chem 48:1760

    Article  CAS  Google Scholar 

  229. Mayranovskiy VG (1987) Dokl AN SSSR 296:923

    Google Scholar 

  230. Vener MV, Mayranovskiy VG (1993) Elektrokhimiya 29:1248

    CAS  Google Scholar 

  231. Mairanovsky VG (1986) 37th ISE meeting Vilnius, August 1986. Extend abstracts 4:92

    Google Scholar 

  232. Saveant J-M (1987) J Am Chem Soc 109:6788

    Article  CAS  Google Scholar 

  233. Saveant J-M (1992) J Am Chem Soc 114:10595

    Article  CAS  Google Scholar 

  234. Saveant J-M (1990) Adv Phys Org Chem 26:1

    CAS  Google Scholar 

  235. Saveant J-M (1994) J Phys Chem 98:3716

    Article  CAS  Google Scholar 

  236. Mayranovskiy VG (1970) Zh Obshch Khim 40:278

    Google Scholar 

  237. Mayranovskiy VG, Valashek IE, Samokhvalov GI (1967) Elektrokhimiya 3:611

    Google Scholar 

  238. Mayranovskiy VG, Muratov IM (1990) Zh Obshch Khim 60:672

    Google Scholar 

  239. Evans M, Hush N (1952) J Chim Phys 49:C159

    CAS  Google Scholar 

  240. Mayranovskiy GV, Fistul VI, Fistul MV (1985) Fiz Tech Poluprovod 19:2082

    Google Scholar 

  241. Grimshaw J, Langan JR, Salmon GA (1988) J Chem Soc Chem Commun 1115

    Google Scholar 

  242. Grimshaw J, Langan JR, Salmon GA (1994) J Chem Soc Faraday Trans 90:75

    Article  CAS  Google Scholar 

  243. German ED, Kuznetsov AM, Tikhomirov VA (1995) J Phys Chem 99:9095

    Article  CAS  Google Scholar 

  244. German ED, Kuznetsov AM, Tikhomirov VA (1997) J Electroanal Chem 420:235

    Article  CAS  Google Scholar 

  245. Mayranovskiy VG (1990) Elektrokhimiya 26:443

    Google Scholar 

  246. Mairanovsky VG (1992) Lecture on the 16th Frumkin Electrochem Seminar, Moscow State University, Moscow

    Google Scholar 

  247. Mairanovsky VG (1993) 44th ISE Meeting, Berlin, Abstracts, p 19

    Google Scholar 

  248. Lund H, Michel H, Simonet J (1974) Acta Chem Scand B28:900

    Article  Google Scholar 

  249. Lund H, Michel H, Simonet J (1975) Acta Chem Scand B29:217

    Article  CAS  Google Scholar 

  250. Mayranovskiy VG, Loginova NF (1975) In: Frumkin AN, Stradyn YaP, Feoktistov LG (eds) Elektrosyntes i bioelektrokhimiya. Materialy VIII Vses Soveshch EKhOS-73, Riga 1973. Nauka, Moscow, p 141

    Google Scholar 

  251. Mayranovskiy VG, Loginova NF, Titova IA (1975) Dokl AN SSSR 223:643

    Google Scholar 

  252. Sease J, Reed R (1975) Tetrah Lett No 6, p 393 (see here also R Reed’s thesis 1970)

    Google Scholar 

  253. Mayranovskiy VG (1980) In: Feoktistov LG (ed) Elektrosintez polymerov. Materialy Vses Soveshch EKhOS-76, Tula 1976. Nauka, Moscow, p 141

    Google Scholar 

  254. Bendersky YV, Mairanovsky VG (1979) J Electroanal Chem 97:1

    Article  Google Scholar 

  255. Bendersky YV, Kara-Ivanov MA, Mayranovskiy VG (1988) Elektrokhimiya 12:1587

    Google Scholar 

  256. Mayranovskiy VG, Titova IA (1976) Dokl AN SSSR 229:1167

    Google Scholar 

  257. Lund H, Daasbjerg K, Lund T et al (1997) Acta Chem Scand 51:135

    Article  CAS  Google Scholar 

  258. Andrieux CP, Hapiot P, Saveant JM (1990) Chem Rev 108:2348

    Google Scholar 

  259. Shono T (1984) Tetrahedron 40:841

    Article  Google Scholar 

  260. Kobosev NI, Monblanova VV (1936) Zh Fiz Khim 7:645

    Google Scholar 

  261. Grabowski ZR, Taraszewska J (2002) Kwart Histor Nauki i Techn 47:9

    Google Scholar 

  262. Kemula W (1952) Roczn Chem 26:281

    CAS  Google Scholar 

  263. Ioffe NT, Mayranovskiy VG (1986) Elektrokhimiya 22:1695

    CAS  Google Scholar 

  264. Ioffe NT, Mayranovskiy VG (1989) Teor Eksp Khim 25:688

    CAS  Google Scholar 

  265. Vener MV, Ioffe NT, Cheprakov AV, Mairanovsky VG (1994) J Electroanal Chem 370:33

    Article  CAS  Google Scholar 

  266. Mairanovsky VG, Yusefovitch LYu, Filippova TM (1977) Zh Fiz Khim 51:1807

    Google Scholar 

  267. Mairanovsky VG, Yusefovitch LYu, Filippova TM (1979) Bruker Report N1, p 8

    Google Scholar 

  268. Mairanovsky VG, Yusefovitch LY, Filippova TM (1983) J Magn Reson 54:19

    Google Scholar 

  269. Prenzler PD, Bramley R, Downing SR, Heath GA (2000) Electrochem Commun 2:516

    Article  CAS  Google Scholar 

  270. Boyd E, Mairanovsky VG (2012) Next generation in situ EC-NMR cell. Bruker 36th NMR Tagung, Ettlingen, 6–7 November 2012

    Google Scholar 

  271. Mairanovsky VG, Samvelyan SK (1991) J Electroanal Chem 302:291

    Article  Google Scholar 

  272. Mairanovsky VG, Boltyanskaya EI (1979) Dokl AN SSSR 247:148

    Google Scholar 

  273. Mairanovsky VG, Boltyanskaya EI (1979) Dokl Chem 247:391

    Google Scholar 

  274. Guriyanova S, Mairanovsky VG, Bonaccurso E (2011) J Colloid Interf Sci 360:800

    Article  CAS  Google Scholar 

  275. Mairanovsky VG (2005) In: Kolb D (ed) Proceedings of the 3rd Gerischer symposium, electrocatalysis: theory and experiment, Berlin, 6–8 Juli 2005, p 89

    Google Scholar 

  276. Mairanovsky VG (2005) In: Kinetics of electrode processes. 8th International Frumkin Symposium, Moscow, 18–22 October 2005, Abstracts, p 49

    Google Scholar 

  277. Mairanovsky VG (2006) Elektrokhimiya 42:1156

    Google Scholar 

  278. Horner L, Neumann H (1965) Chem Ber 98:3462

    Article  CAS  Google Scholar 

  279. Mairanovsky VG (1976) Angew Chem 88:283

    Article  Google Scholar 

  280. Mairanovsky VG (1979) Electro-deprotection – electrochemical removal of protecting groups. In: New synthetic methods, vol 5. Verlag Chemie, Weinheim, pp 141–180

    Google Scholar 

  281. Loginova NF, Mayranovskiy VG, Katrukha GS (1979) Bioorgan Khim 5:1579

    CAS  Google Scholar 

  282. Mayranovskiy VG, Loginova NF (1973) Zh Obshch Khim 43:207

    Google Scholar 

  283. Ioffe NT, Loginova NF, Mayranovskiy VG (1978) Zh Obshch Khim 48:437

    CAS  Google Scholar 

  284. Miksta SYa, Mayranovskiy VG, Loginova NF et al (1977) Avt sert USSR 586165/14.07.1976

    Google Scholar 

  285. Titova IA, Mayranovskiy VG (1972) Avt sert USSR 424424/03.03.1972

    Google Scholar 

  286. Titova IA, Mayranovskiy VG, Bogoslovskiy NA, Samokhvalov GI (1975) Avt sert USSR 424424/30.06.1975

    Google Scholar 

  287. Mayranovskiy VG, Titova IA (1977) Avt sert USSR 657021/10.11.1977

    Google Scholar 

  288. Corey EJ, Chaykovsky M (1965) J Am Chem Soc 87:1345

    Article  CAS  Google Scholar 

  289. Meller ME, Selesnev LG, Luknitskiy FI et al (1973) Khim Farm Zh 7:33

    CAS  Google Scholar 

  290. Fleischmann M, Korinek K, Pletcher D (1971) J Electroanal Chem 3:39

    Article  Google Scholar 

  291. Seiler P, Robertson PM (1982) Chimia 36:305

    CAS  Google Scholar 

  292. Robertson PM, Berg P, Reimann H, Schleich K, Seiler P (1983) J Electrochem Soc 130:591

    Article  CAS  Google Scholar 

  293. Mayranovskiy VG, Gitlin IG, Gurevitch VM, Rosanov SA, Vedernikov EI, Kukushkina AE, Fursikov GI (1984) Avt sert USSR 1256397/08.05.1984

    Google Scholar 

  294. Gitlin IG, Mayranovskiy VG, Gurevitch VM, Rosanov SA, Vedernikov EI (1984) Avt sert USSR 1216974/08.05.1984

    Google Scholar 

  295. Mairanovsky VG, Gitlin IG, Rosanov SA, Gurevitch VM, Vedernikov EI, Kukushkina AE (1990) J Electrochem Soc 137:151C. In: 177th meeting of the electrochemical society, Montreal, 6–11 May 1990

    Google Scholar 

  296. Mairanovsky VG, Gitlin IG, Rosanov SA, Gurevitch VM, Vedernikov EI, Kukushkina AE (1990) Elektrokhimiya 26:915

    Google Scholar 

  297. Mairanovsky VG, Gitlin IG, Rosanov SA (2012) J Solid State Electrochem 16:2399

    Article  CAS  Google Scholar 

  298. Lund H (2011) J Solid State Electrochem 15:1733

    Article  CAS  Google Scholar 

  299. Mairanovsky VG (1979) J Electroanal Chem 97:103

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to my wife, Dr. Bella Lurik , for her support during the writing of this work, for advice, and for memories of some events and meetings.

I express my gratitude, to Drs. Galina Bekker, Victor Glezer, Naftolij Ioffe, Vladimir Kurmaz, Emma Malakhova, Feliks Mairanovsky, Irena Mayranovsky, Elena Obol’nikova, Vladimir Petrosyan, Garislav Shkolenok, Igor’ Sirotin, Mikhail Yanotovskiy , and El’sa Zacharova for providing valuable materials and photos; and to Yulia Polyak for her work with photos.

I sincerely thank Dr. Boris Kahn and Dr. Stephan Samvelyan for their assistance with translation and especially my daughter Dr. Elena Boyd for her advice, changes, and corrections.

My special thanks to Dr. Fritz Scholz for his comprehensive help with this article and the whole idea—to write a book about the work of scientists under conditions of a unique historical experiment, which divided mankind in two worlds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. Mairanovsky .

Editor information

Editors and Affiliations

Appendix: Symbolization of Electrode Reactions (Based on [299])

Appendix: Symbolization of Electrode Reactions (Based on [299])

Symbols “e,” “e v ,” and “ε” refer, correspondingly, to the heterogeneous, “volume” (without of any electrode interface effects) and solvated electron transfer; “c” and “c s ” refer to the volume and “surface” chemical stages. Designation of chemical stages “c”: according to particle, “p” (proton) and “h” (hydrogen), “minus” for detachment of a particle, and for attachment of a particle the “+” sign is omitted; and according to the type of reaction, “a” (association, bond formation), “d” (dissociation, bond cleavage), and “r” (rearrangement, isomerization). The subscripts N, E, R, and M (nucleophil, electrophil, radical reagents, material of the electrode) are used to indicate the nature of the substances; the subscript “2” is used for the dimerization reaction. The parallel reactions, the reactions of the second substance, and the “concert reactions” are written in the brackets ( ), [ ], and { }, correspondingly. The origin and the carry points of reagents may be indicated by the arrows “↑” and “↓,” correspondingly. Capital А and С letters may precede the reaction schema in order to distinguish between anodic and cathodic processes. The overall number of stages and the transported particles are given with the “” sign, for example, ∑2edp [cf. Reaction (9.7a)]. When written compactly, the symbols are entered directly in the reaction equation [cf. Reaction (9.6)].

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mairanovsky, V.G. (2015). Organic Electrochemistry in the USSR. In: Scholz, F. (eds) Electrochemistry in a Divided World. Springer, Cham. https://doi.org/10.1007/978-3-319-21221-0_9

Download citation

Publish with us

Policies and ethics