Skip to main content

Hans-Heinrich Möbius and the Development of Electrochemistry with Solid Electrolytes

  • Chapter
Electrochemistry in a Divided World
  • 697 Accesses

Abstract

The development of the electrochemistry using solid electrolytes at high temperatures is very closely connected with the name of Hans-Heinrich Möbius [1]. This field of electrochemistry is relatively young and has developed after Carl Wagner’s discovery (for the first time mentioned in 1943) of the unipolar mobility of oxide ions in the Nernst’s glower (stabilized zirconia) [2]. In some mixed oxides with fluorite structure, the conductivity increases exponentially with increasing temperature due to the migration of oxide ions via oxide ion vacancies. Karl Haufe made his doctor thesis under Wagner’s supervision. Haufe, in turn, was Professor from 1948 to 1952 at the University of Greifswald and inspired his student Horst Peters to investigate the structure of mixed oxide based on zirconia by X-ray diffraction. Peters defended his doctoral thesis at the University of Rostock. Based on his ideas, Horst Peters together with Hans-Heinrich Möbius started the investigation on fuel cells based on solid electrolytes like zirconia in Rostock in 1954. Later, in 1960 Möbius moved as a senior assistant to the University of Greifswald because for this research the scientific conditions at the Institute of Physical Chemistry in Greifswald, where the director, Prof. H. Witzmann, worked on luminescence and catalysis of solids [3] were more attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartung R, Scholz F (1997) 1996 Schönbein Medal of Honour awarded to Hans-Heinrich Möbius. J Solid State Electrochem 1:114–115

    Article  CAS  Google Scholar 

  2. Wagner C (1943) On the mechanism of the electrical conductivity in the Nernst glower. Naturwissensch 31:265–268, Published in German: Über den Mechanismus der elektrischen Stromleitung im Nernststift

    Article  CAS  Google Scholar 

  3. Möbius H-H (1997) On the history of solid electrolyte fuel cells. J Solid State Electrochem 1:2–16

    Article  Google Scholar 

  4. Guth U (2012) H.-H. Möbius. J Solid State Electrochem 16:827–828

    Article  CAS  Google Scholar 

  5. Kiukkola K, Wagner C (1957) Measurements on galvanic cells involving solid electrolytes. J Electrochem Soc 104:379–387

    Article  Google Scholar 

  6. Peters H, Möbius H-H (1958) Electrochemical investigation of carbon dioxide dissoziation and Boudouard equilibrium. Naturwissenschaften 45:309–310, Published in German: Elektrochemische Untersuchung des Kohlensäuredissoziationsgleichgewichtes und des Boudouard-Gleichgewichtes

    Article  CAS  Google Scholar 

  7. Peters H, Möbius H-H (1958) Electrochemical investigation of equilibria CO + 0,5 O2 = CO2 und C + CO2 = 2 CO. Z physik Chem [Leipzig] 209:298–309, published in German: Elektrochemische Untersuchung der Gleichgewichte CO + 0,5 O2 = CO2 und C + CO2 = 2 CO

    CAS  Google Scholar 

  8. Möbius H-H (1965) Basic principles of gas-potentiometric determination of oxygen. Z physik Chem [Leipzig] 230:396–412, Published in German: Grundlagen der gaspotentiometrischen Sauerstoffbestimmung

    Google Scholar 

  9. Hartung R, Möbius H-H (1968) Potentiometric determination oft he water vapour dissoziation equilibrium between 1000 and 1300 K by means of a solid electrolyte cell. Chemie-Ing-Techn 40:592–600, published in German: Potentiometrische Bestimmung des Wasserdampf-Dissoziationsgleichgewichtes zwischen 1000 und 1300°K mit einer Festelektrolytzelle

    Article  CAS  Google Scholar 

  10. Möbius H-H (1992) Solid state electrochemical potentiometric sensors for gas analysis. In: Göpel W, Hesse J, Zemel JN (eds) Sensors. VCH, Weinheim, p 1107

    Google Scholar 

  11. Guth U (2012) Gas sensors. In: Bard A, Inzelt G, Scholz F (eds) Electrochemical dictionary, 2nd edn. Springer, Heidelberg

    Google Scholar 

  12. Weissbart J, Ruka R (1961) Oxygen gauge. Rev Scient Instrum 32:593–595

    Article  CAS  Google Scholar 

  13. Peters H, Möbius H-H Methods for gas analysis at higher temperatures by means of galvanic solid electrolyte elements, published in German: Verfahren zur Gasanalyse bei erhöhten Temperaturen mit Hilfe galvanischer Festelektrolytelemente. DDR-P. 21673, angem. 20.5.1958, ausgeg. 7.8.1961

    Google Scholar 

  14. Möbius H-H (2010) On the history of solid electrolyte gas sensors in Mecklenburg-Western Pommerania, published in German: Zur Geschichte der Festelektrolyt-Gassensoren in Mecklenburg-Vorpommern, Greifswald private communication

    Google Scholar 

  15. Möbius H-H (1966) Potentiomertic titration oxidable gases by air in solid electrolyte cells. Z physik Chem [Leipzig] 231:209–214, Published in German: Potentiometrische Titrationen oxydabler Gase mit Luft in Festelektrolytzellen

    Google Scholar 

  16. Möbius H-H (1962) On the oxygen ion conductivity of solids and the unipolar ion conductivity in fluorite structures. Z Chem [Leipzig] 2:100–106, Published in German: Über die Sauerstoffionenleitung fester Körper und die unipolare lonenleitung bei Fluoritstrukturen

    Article  Google Scholar 

  17. Möbius H-H, Witzmann H, Pröve G (1964) Systematic measurement of conductivity in oxygen ion conducting solid electrolytes. Z Chem [Leipzig] 4:195–196, published in German: Systematische Leitfähigkeitsmessungen an sauerstoffionenleitenden Festelektrolyten

    Article  Google Scholar 

  18. Möbius H-H (1964) Composition and classification of solid electrolytes with oxygen ion conductivity. Z Chem [Leipzig] 4:81–94, Published in German: Zusammensetzung und Systematik der Festelektrolyte mit Sauerstoffionenleitung

    Article  Google Scholar 

  19. Möbius H-H (1965) The Nernst mass—its history and today’s importance. Naturwissensch 52:529–536, Published in German: Die Nernst-Masse, ihre Geschichte und heutige Bedeutung

    Article  Google Scholar 

  20. Möbius H-H, Witzmann H, Gerlach D (1964) Investigation of cation diffusion in the system Zr0.85Ca0.15O1.85. Z Chem [Leipzig] 4:154–155, published in German: Untersuchung zur Kationendiffusion im System Zr0.85Ca0.15O1.85

    Article  Google Scholar 

  21. Möbius H-H, Hartung R (1965) Determination of oxygen permeability of refractories at high temperatures by means of potentiometric gas analysis using solid electrolyte cells. Silikattechnik [Berlin] 16:276–280, Published in German: Die Prüfung der Sauerstoffdurchlässigkeit feuerfester Materialien bei hohen Temperaturen durch potentiometrische Gasanalyse mit Festelektrolytzellen

    Google Scholar 

  22. Hartung R, Möbius H-H (1970) Determination of the oxidation semi conductivity of ZrO2 using permeation data. Z physik Chem [Leipzig] 243:133–138, Published in German: Bestimmung der Oxydationshalbleitung von ZrO2 aus Permeationsdaten

    CAS  Google Scholar 

  23. Möbius H-H (1958) Theoretic and experimental investigation of fuel cell elements. Thesis Rostock (Published in German: Theoretische und experimentelle Untersuchung an Brennstoffelementen mit festen Elektrolyten)

    Google Scholar 

  24. Möbius H-H (1959) On application of solid electrolyte elements, published in German: Zur Nutzanwendung von Festelektrolytelementen Mbr dtsch Akad Wiss Berlin 1:35; Mittteilungsbl chem. Ges DDR 6:45

    Google Scholar 

  25. Rohland B, Möbius H-H (1968) On the development of electrodes for solid electrolyte fuel cells. Abh Sächs Akad Wiss Leipzig Math-nat Kl 49:355–366, Published in German: Zur Entwicklung von Elektroden für Festelektrolytbrennstoffzellen

    CAS  Google Scholar 

  26. Karpachov SV, Filiayev AT, Palguyev SF (1964) Polarization of carbon monoxide electrodes on platinum in a solid zirconia-lime electrolyte. Electrochim Acta 9:1681–1685

    Article  Google Scholar 

  27. Möbius H-H (1968) High temperature fuel cell elements using oxygen ion conducting solid electrolytes. Elektrie [Berlin] 2:387–392, Published in German: Hochtemperaturbrennstoffelemente mit sauerstoffionenleitenden Festelektrolyten

    Google Scholar 

  28. Rohland B, Möbius H-H (1968) Investigation of conductivity and stability of solid electrolytes for fuel cells. Abh Sächs Akad Wiss Leipzig Math-nat Kl 49:343–354, Published in German: Leitfähigkeit und Stabilitätsuntersuchungen an Festelektrolyten für Brennstoffzellen aus dem System ZrO2-YO1,5-MgO

    Google Scholar 

  29. Rohland B, Möbius H-H (1968) Batteries consist of solid electrolyte fuel cells using uranium oxide anode layers. Naturwissenschaften 55:227–228, Published in German: Batterien aus Festelektrolytbrennstoffzellen mit Uranoxid-Anodenschichten

    Article  CAS  Google Scholar 

  30. Hartung R, Möbius H-H (1967) About the ac polarization of platinum electrodes on oxygen ion conducting solid electrolytes at temperature of about 1000 °C. Z Chem [Leipzig] 7:325, Published in German: Über Wechselstrompolarisation an Platinelektroden auf sauerstoffionenleitenden Festelektrolyten bei Temperaturen um 1000 °C

    Article  CAS  Google Scholar 

  31. Bauerle JE (1969) Study of solid electrolyte polarization by a complex admittance method. J Phys Chem Solids 30:2657–2670

    Article  CAS  Google Scholar 

  32. Möbius H-H, Rohland B (1965) On problems of high temperature fuel cell elements using oxygen ion conducting solid electrolytes, published in German: Über Probleme der Hochtemperatur-Brennstoffelemente mit sauerstoffionenleitenden Festelektrolyten. Rev. Energ. Primaire. Journées Int d’Etude Piles á Combustible, Bruxelles 3, pp 27–34

    Google Scholar 

  33. Bagotsky VS (2011) Fuel cells, batteries, and the development of electrochemistry. J Solid State Electrochem 15:1559–1562

    Article  CAS  Google Scholar 

  34. Möbius H-H, Dürselen W (1973) Thermodynamics. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, Published in German: Chemische Thermodynamik in Lehrwerk Chemie

    Google Scholar 

  35. Möbius H-H (1988) Electrolyte equilibria and Electrochemistry, 5th edn. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, Published in German. Elektrolytgleichgewichte und Elektrochemie in Lehrwerk Chemie

    Google Scholar 

  36. Möbius H-H, Zhuk PP, Jakobs S, Hartung R, Guth U, Sandow H, Vecer AA (1990) Investigation of electrochemical oxygen sensors with solid electrolytes and oxide powder electrodes. Soviet Electrochem 11:1235–1243, Translated

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Guth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guth, U. (2015). Hans-Heinrich Möbius and the Development of Electrochemistry with Solid Electrolytes. In: Scholz, F. (eds) Electrochemistry in a Divided World. Springer, Cham. https://doi.org/10.1007/978-3-319-21221-0_14

Download citation

Publish with us

Policies and ethics