Skip to main content

A Simplex Nelder Mead Genetic Algorithm for Minimizing Molecular Potential Energy Function

  • Chapter
  • First Online:
Applications of Intelligent Optimization in Biology and Medicine

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 96))

  • 1083 Accesses

Abstract

In this paper, we propose a new algorithm, namely genetic Nelder Mead algorithm (GNMA), for minimizing molecular potential energy function. The minimization of molecular potential energy function problem is very challenging, since the number of local minima grows exponentially with the molecular size. The new algorithm combines a global search genetic algorithm with a local search Nelder-Mead algorithm in order to search for the global minimum of molecular potential energy function. Such hybridization enhances the power of the search technique by combining the wide exploration capabilities of genetic algorithm and the deep exploitation capabilities of Nelder-Mead algorithm. The proposed algorithm can reach the global or near-global optimum for the molecular potential energy function with up to 200\(^\circ \) of freedom. We compared the proposed GNMA results with the results of 9 existing algorithms from the literature. Experimental results show efficiency of the proposed GNMA to have more accurate solutions with low computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B̈ack, T., Fogel, D.B., Michalewicz, T.: Evolutionary Computation: Basic Algorithms and Operators. Institute of Physics Publishing, Bristol (2000)

    Google Scholar 

  2. Bansal, J.C., Shashi, Deep, K., Katiyar, V.K.: Minimization of molecular potential energy function using particle swarm optimization. Int. J. Appl. Math. Mech. 6(9), 1–9 (2010)

    Google Scholar 

  3. Barbosa, H.J.C., Lavor, C., Raupp, F.M.: A GA-simplex hybrid algorithm for global minimization of molecular potential energy function. Ann. Oper. Res. 138, 189–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birru, H.K., Chellapilla, K., Rao, S.S.: Local search operators in fast evolutionary programming. In: Proceedings of the 1999 Congress on Evolutionary Computation, vol. 2, pp. 1506–1513, July 1999

    Google Scholar 

  5. Cheng, C.T., Ou, C.P., Chau, K.W.: Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfallrunoff model calibration. J. Hydrol. 268(14), 72–86 (2002)

    Article  Google Scholar 

  6. Deep, K., Thakur, M.: A new mutation operator for real coded genetic algorithms. Appl. Math. Comput. 193(1), 211–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 188(1), 895–912 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deep, K., Shashi, Katiyar, V.K., Nagar, A.K.: Minimization of molecular potential energy function using newly developed real coded genetic algorithms. Int. J. Optim. Control: Theor. Appl. (IJOCTA) 2(1), 51–58 (2012)

    Google Scholar 

  9. De Jong, K.A.: Genetic algorithms: a 10 year perspective. In: International Conference on Genetic Algorithms, pp. 169–177 (1985)

    Google Scholar 

  10. Dra\(\breve{{{\rm z}}}\)i\(\acute{{{\rm c}}}\), M., Lavor, C., Maculan, N., Mladenovi\(\acute{{{\rm c}}}\), N.: A continuous variable neighborhood search heuristic for finding the three-dimensional structure of a molecule. Eur. J. Oper. Res. 185, 1265–1273 (2008)

    Google Scholar 

  11. Floudas, C.A., Klepeis, J.L., Pardalos, P.M.: Global optimization approaches in protein folding and peptide docking, DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society (1999)

    Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  13. Gong, M., Jiao, L., Zhang, L.: Baldwinian learning in clonal selection algorithm for optimization. Inf. Sci. 180, 1218–1236 (2010)

    Article  Google Scholar 

  14. Hedar, A., Ali, A.F.: Tabu search with multi-level neighborhood structures for high dimensional problems. Appl. Intell. 37, 189–206 (2012)

    Article  Google Scholar 

  15. Hedar, A., Ali, A.F., Hassan, T.: Genetic algorithm and tabu search based methods for molecular 3D-structure prediction. Int. J. Numer. Algebra, Control Optim. (NACO) (2011)

    Google Scholar 

  16. Hedar, A., Ali, A.F., Hassan, T.: Finding the 3D-structure of a molecule using genetic algorithm and tabu search methods. In: Proceedings of the 10th International Conference on Intelligent Systems Design and Applications (ISDA2010), Cairo, Egypt (2010)

    Google Scholar 

  17. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  18. Kimura, S., Konagaya, A.: High dimensional function optimization using a new genetic local search suitable for parallel computers. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 335–342, Oct 2003

    Google Scholar 

  19. KoroS̃ec, P., S̃ilc, J., Filipic, B.: The differential ant-stigmergy algorithm. Inf. Sci. 192, 82–97 (2012)

    Article  Google Scholar 

  20. Kova\(\breve{{{\rm c}}}\)evi\(\acute{{{\rm c}}}\)-Vuj\(\breve{{{\rm c}}}\)i\(\acute{{{\rm c}}}\), V., \(\check{{{\rm c}}}\)angalovi\(\acute{{{\rm c}}}\), M., Dra\(\breve{{{\rm z}}}\)i\(\acute{{{\rm c}}}\), M., Mladenovi\(\acute{{{\rm c}}}\), N.: VNS-based heuristics for continuous global optimization. In: Hoai An, L.T., Tao, P.D. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 215–222. Hermes Science Publishing Ltd. (2004)

    Google Scholar 

  21. Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: model, taxonomy, and design issue. IEEE Trans. Evol. Comput. 9(5), 474–488 (2005)

    Article  Google Scholar 

  22. Liu, B., Wang, L., Jin, Y.H.: An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern. 37(1), 18–27 (2007)

    Article  Google Scholar 

  23. Molina, D., Lozano, M., Herrera, F.: Memetic algorithm with local search chaining for large scale continuous optimization problems. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, pp. 830–837 (2009)

    Google Scholar 

  24. Muttil, N., Chau, K.W.: Neural network and genetic programming for modelling coastal algal blooms. Int. J. Env. Pollut. 28(34), 223–238 (2006)

    Article  MATH  Google Scholar 

  25. Neri, F., Tirronen, V.: Scale factor local search in differential evolution. Memetic Comput. J. 1(2), 153–171 (2009)

    Article  Google Scholar 

  26. Pardalos, P.M., Shalloway, D., Xue, G.L.: Optimization methods for computing global minima of nonconvex potential energy function. J. Global Optim. 4, 117–133 (1994)

    Article  MathSciNet  Google Scholar 

  27. Pogorelov, A.: Geometry. Mir Publishers, Moscow (1987)

    Google Scholar 

  28. Tirronen, V., Neri, F., Karkkainen, T., Majava, K., Rossi, T.: An enhanced memetic differential evolution in filter design for defect detection in paper production. Evol. Comput. J. 16(4), 529–555 (2008)

    Article  Google Scholar 

  29. Wales, D.J., Scheraga, H.A.: Global optimization of clusters, crystals and biomolecules. Science 285, 1368–1372 (1999)

    Article  Google Scholar 

  30. Wang, Y.X., Zhao, Z.D., Ren, R.: Hybrid particle swarm optimizer with tabu strategy for global numerical optimization. In: Proceedings of the 2007 Congress on Evolutionary Computation, pp. 2310–2316 (2007)

    Google Scholar 

  31. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178, 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhong, W., Liu, J., Xue, M., Jiao, L.: A multiagent genetic algorithm for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B 34(2), 1128–1141 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Fouad Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ali, A.F., Hassanien, AE. (2016). A Simplex Nelder Mead Genetic Algorithm for Minimizing Molecular Potential Energy Function. In: Hassanien, AE., Grosan, C., Fahmy Tolba, M. (eds) Applications of Intelligent Optimization in Biology and Medicine. Intelligent Systems Reference Library, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-21212-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21212-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21211-1

  • Online ISBN: 978-3-319-21212-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics