Skip to main content

Nanopackaging Requests for Atomic Scale Circuits and Molecule-Machines

  • Conference paper
  • First Online:

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

Starting from the requirement of fabricating a large atomic flat surface for supporting a functioning electronic atomic scale circuit, the different possible architectures of an atomic scale Boolean logic circuit are discussed in the prospect to be supported by such a surface and encapsulated at the end of the fabrication process. This leads to look after the best possible interconnection strategy to beneficiate from the possibly large calculating power of a large atomic scale circuit. This has many consequences on the final packaging of such a circuit while preserving the atomic scale precision of its construction and while offering a large number of interconnects from the atomic scale to the external world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jung, T.A., Schlittler, R.R., Gimzewski, J.K., Tang, H., Joachim, C.: Room temperature assembly of nanostructure by manipulating individual molecule. Science 271, 181 (1996)

    Article  CAS  Google Scholar 

  2. Chiaravalloti, F., Gross, L., Rieder, K.H., Stojkovic, S., Gourdon, A., Joachim, C., Moresco, F.: A rack and pinion device at the molecular scale. Nat. Mater. 6, 30 (2007)

    Article  CAS  Google Scholar 

  3. Manzano, C., Soe, W.H., Wong, H.S.J., Ample, F., Gourdon, A., Chandrasekhar, N., Joachim, C.: Step by step rotation of a molecule-gear mounted on an atomic scale axis. Nat. Mat. 8, 576 (2009)

    Article  CAS  Google Scholar 

  4. Perera, U.G.E., Ample, F., Kersell, H., Zhang, Y., Vives, G., Echeverria, J., Grisolia, M., Rapenne, G., Joachim, C., Hla, S.-W.: Controlled step by step rotation of a multi-component single molecule motor. Nat. Nano. 8, 46 (2013)

    Article  CAS  Google Scholar 

  5. Heinrich, A.J., Lutz, C.P., Gupta, J.A., Eigler, D.M.: Molecules cascades. Science 298, 1381 (2002)

    Article  CAS  Google Scholar 

  6. Soe, W.H., Manzano, X., Renaud, N., De Mandoza, P., De Sarkar, A., Ample, F., Hliwa, M.M., Echevaren, A.M., Chandrasekhar, N., Joachim, C.: Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate. ACS Nano. 5, 1436 (2011)

    Article  CAS  Google Scholar 

  7. Kolmer, M., Zuzak, R., Dridi, G., Godlewski, S., Joachim, C., Szymonski, M.: Realization of a quantum hamiltonian Boolean logic gate on the si(001):H surface. Nanoscale, (2015, in press)

    Google Scholar 

  8. Joachim, C., Martrou, D., Rezeq, M., Troadec, C., Deng, J., Chandrasekhar, N., Gauthier, S.: Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J. Phys. Condens. Matter 22, 084025 (2010)

    Article  CAS  Google Scholar 

  9. Deng, J., Troadec, C., Ample, F., Joachim, C.: Fabrication and manipulation of solid-state SiO2 nano-gears on a gold surface. Nanotechnology 22, 275307 (2011)

    Article  CAS  Google Scholar 

  10. Yang, J.S., Jie, D., Chandrasekar, N., Joachim, C.: UHV-STM manipulation of single Au nano-island on MoS2 for the construction of planar nano-interconnects. J. Vac. Sci. Tech. B 25, 1694 (2007)

    Article  CAS  Google Scholar 

  11. Yang, J., Deng, J., Troadec, C., Ondarcuhu, T., Joachim, C.: Solid state SiO2 nanogears AFM tip manipulation on HOPG. Nanotechnology 25, 465305 (2014)

    Article  Google Scholar 

  12. Deng, J., Troadec, C., Kim, H.K., Joachim, C.: Direct transfer of Au nano-ilslands from a MoS2 stamp to an SiH surface. J. Vac. Sci. Tech. B 28, 484 (2010)

    Article  CAS  Google Scholar 

  13. Soukiassian, L., Mayne, A.J., Carbone, M., Dujardin, G.: Atomic wire fabrications by STM induced hydrogen desorption. Surf. Sci. 528, 121 (2003)

    Article  CAS  Google Scholar 

  14. Kodama, N., Hasegawa, T., Tsuruoka, T., Joachim, C., Aono, M.: Electronic states formation by surface atom removal on a MoS2 surface. Jpn. J. Appl. Phys. 51, 06FF07 (2012)

    Google Scholar 

  15. Kolmer, M., Godlewski, S., Zuzak, R., Wojtaszek, M., Rauer, C., Thuaire, A., Hartmann, J.M., Moriceau, H., Joachim, C., Szymonski, M.: Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(001) wafers processed and nanopackaged in a clean room environment. Appl. Surf. Sci. 288, 83 (2014)

    Article  CAS  Google Scholar 

  16. Shannon, C.E.: Asymbolic analysis of the relay and switching circuits. Master thesis (Bell Labs Archives) (1937)

    Google Scholar 

  17. Aviram, A.: Molecules for memory, logic and amplification. J. Am. Chem. Soc. 110, 5687 (1988)

    Article  CAS  Google Scholar 

  18. Wada, Y.: Proposal of atom/molecule switching devices. J. Vac. Sci. Tech. A 17, 1399 (1999)

    Article  CAS  Google Scholar 

  19. Carter, F.L.: The molecular device computer: point of departure for large scale cellular automata. Physica D 10, 175 (1984)

    Article  Google Scholar 

  20. Ellenbogen, J.C., Love, J.C.: Architectures for molecular electronic computers: 1. Logic structures and an adder designed from molecular electronic diodes. Proc. IEEE 88, 386 (2000)

    Google Scholar 

  21. Magoga, M., Joachim, C.: Towards circuitry in a tunnel barrier. Phys. Rev. B 59, 16011 (1999)

    Article  CAS  Google Scholar 

  22. Feynman, R.: Plenary talk presented at CLEO/IQEC meeting (1984). In: Hey, T., Allen, R.W. (eds.) Feynman lectures on computation. Westview Press, Boulder (1996)

    Google Scholar 

  23. Staddler, R., Ami, S., Forshow, M., Joachim, C.: Memory/adder model based on single C60 molecular transistors. Nanotechnology 12, 350 (2001)

    Article  Google Scholar 

  24. Renaud, N., Ratner, M., Joachim, C.: A time-dependant approach to electronic transmission in model molecular junctions. J. Phys. Chem. B 115, 5582 (2011)

    Article  CAS  Google Scholar 

  25. Renaud, N., Joachim, C.: Classical Boolean logic gates with quantum system. J. Phys. A 44, 155302 (2011)

    Article  Google Scholar 

  26. Renaud, N., Hliwa, M., Joachim, C.: Quantum design rules for single molecule logic gates. Phys. Chem. Chem. Phys. 13, 14404 (2011)

    Google Scholar 

  27. Soe, W.H., Manzano, X., Renaud, N., De Mandoza, P., De Sarkar, A., Ample, F., Hliwa, M., Echevaren, A.M., Chandrasekhar, N., Joachim, C.: A single molecule NOR gate with Au atom inputs. Phys. Rev. B 83, 155443 (2011)

    Google Scholar 

  28. Dridi, G., Romain, J., Hliwa, M., Joachim, C.: The mathematics of a QHC half adder Boolean logic gate. Nanotechnology, (2015, in press)

    Google Scholar 

  29. Bouju, X., Joachim, C., Girard, C.: Moving gold atoms with an AFM Tip: a study of dimer and trimer formation on NaCl(100). Phys. Rev. B 50, 7893 (1994)

    Article  CAS  Google Scholar 

  30. Schofield, S.R., Studer, P., Hirjibehedin, C.F., Curson, N.J., Aeppli, G., Bowler, D.R.: Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013)

    Article  CAS  Google Scholar 

  31. Joachim, C.: Bonding more atom together for a single molecule computer. Nanotechnology 13, R1 (2002)

    Article  CAS  Google Scholar 

  32. Sillin, H.O., Aguilera, R., Shieh, H.H., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24, 384004 (2013)

    Article  Google Scholar 

  33. Joachim, C., Ratner, M.: Molecular electronics: some views on transport junctions and beyond. PNAS 102, 8801 (2005)

    Article  CAS  Google Scholar 

  34. Stojkovic, S., Joachim, C., Grill, L., Moresco, F.: The contact conductance on a molecular wire. Chem. Phys. Lett. 408, 134 (2005)

    Article  CAS  Google Scholar 

  35. Cholet, S., Joachim, C., Martinez, J.P., Rousset, B.: Fabrication of co-planar metal insulator-metal solid state nanojunction down to 5 nm. Europhys. J. Appl. Phys. 8, 139 (1999)

    Article  CAS  Google Scholar 

  36. Luthi, R., Schlittler, R.R., Brugger, J., Vettiger, P., Welland, M.E., Gimzewski, J.K.: Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods. Appl. Phys. Lett. 75, 1314 (1999)

    Article  CAS  Google Scholar 

  37. Weber, B., Mahapatra, S., Ryu, H., Lee, S., Fuhrer, A., Reusch, T.C.G., Thompson, D.L., Lee, W.C.T., Klimeck, G., Hollenberg, L.C.L., Simmons, M.Y.: Ohm’s law survives to the atomic scale. Science 335, 64 (2012)

    Article  CAS  Google Scholar 

  38. Saifullah, M.S.M., Ondarcuhu, T., Koltsov, D.F., Joachim, C., Welland, M.: A reliable scheme for fabricating sub-5 nm co-planar junction for molecular electronics. Nanotechnology 13, 659 (2002)

    Article  CAS  Google Scholar 

  39. Cholet, S., Joachim, C., Martinez, J.P., Rousset, B.: Towards 4-electrodes co-planar metal-insulator-metal nanojunctions down to 10 nm. Nanotechnology 12, 1 (2001)

    Google Scholar 

  40. Tun, T.N., Lwin, M.H.T., Kim, H.H., Chandrasekar, N., Joachim, C.: Wetting studies on Au nano-wires deposited through nanostencil mask. Nanotechnology 18, 335301 (2007)

    Article  Google Scholar 

  41. Steurer, W., Gross, L., Schlittler, R.R., Meyer, G.: A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope. Rev. Sci. Instr. 85, 023706 (2014)

    Article  Google Scholar 

  42. Lwin, M.H.T., Tun, T.N., Kim, H.H., Kajen, R.S., Chandrasekhar, N., Joachim, C.: Backside interconnect fabrication for atomic and molecular scale circuits. J. Vac. Sci. Tech. B 28, 978 (2010)

    Google Scholar 

  43. Kutchoukov, V.G., Shikida, M., Mollinger, J.R., Bossche, A.: J. Micromech. Microeng. 14, 1029 (2004)

    Article  Google Scholar 

  44. Zhang, P.P., Roberts, M.M., Tevaarweck, E., Park, B.N., Savage, D.E., Celler, G., Knezevic, I., Evans, P.G., Eriksson, M.A., Lagally, M.G.: Electronic transport in nanometer-scale silicon-on-insulator membranes. Nature 439, 703 (2006)

    Article  CAS  Google Scholar 

  45. Grill, L., Dyer, M., Lafferentz, L., Persson, M., Peters, M.V., Hecht, S.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotech. 2, 687 (2007)

    Article  CAS  Google Scholar 

  46. Ami, S., Joachim, C.: Logic gates and memory cells based on single C60 electromechanical transistor. Nanotechnology 12, 44 (2001)

    Article  CAS  Google Scholar 

  47. Cacciolati, O., Joachim, C., Martinez, J.P., Carsenac, F.: Fabrication of N electrodes nano-junction for mono-molecular interconnects. Int. J. Nanosci. 3, 233 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission under the AtMol Integrated project and by the MANA-NIMS MEXT program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Joachim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Joachim, C. (2015). Nanopackaging Requests for Atomic Scale Circuits and Molecule-Machines. In: Baillin, X., Joachim, C., Poupon, G. (eds) Nanopackaging: From Nanomaterials to the Atomic Scale. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-21194-7_5

Download citation

Publish with us

Policies and ethics