Skip to main content

Direct Integration of Carbon Nanotubes in Si Microsystems

  • Conference paper
  • First Online:
Nanopackaging: From Nanomaterials to the Atomic Scale

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 620 Accesses

Abstract

The integration of nanomaterials such as carbon nanotubes (CNTs) into microsystems is highly desirable, in order to make use of the unique nanomaterial properties in real devices. However, the CNT-to-microsystem integration is challenging to implement in a manufacturable, cost-effective industrial process. This text presents our work towards a process for making complete CMOS/MEMS systems with integrated CNTs. We demonstrate the feasibility of the process, using room-temperature processing, low-cost equipment and consumables, and electrical control with automation possibilities. CNTs are directly integrated at the desired positions in the Si microsystem, forming closed Si/CNT/Si circuits. An applied electric field during manufacturing ensures that the CNTs forming those circuits are well defined, thin and straight. We explore different designs with the aim to obtain uniform and well-defined CNT synthesis conditions and show that simplified designs can perform comparable to more complex ones. The Si/CNT/Si circuits obtained can show rectifying (Schottky-like) or near-ohmic behaviour. Gas sensing possibilities are demonstrated, indicating the possibility of monitoring ageing/fermenting of food. Functionalization of CNTs is demonstrated, using thermal evaporation of Sn and Pd, opening for selective and sensitive sensors for various gases and analytes. Detailed microscopic characterization of the obtained CNTs is presented.

This book chapter is based to a large extent on the article, reproduced with permission: K.E. Aasmundtveit, B.Q. Ta, Q-H Nguyen, T.B. Haugen, N. Hoivik, E. Halvorsen “Local synthesis of carbon nanotubes for direct integration in Si microsystems—design considerations,” Advances in Manufacturing, vol. 1, (2013), p 218–225.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, N., Lordi, V.: Young’s modulus of single-walled carbon nanotubes. J. Appl. Phys. 84, 1939–1943 (1998)

    Article  CAS  Google Scholar 

  2. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997)

    Article  CAS  Google Scholar 

  3. Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)

    Article  CAS  Google Scholar 

  4. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33, 883 (1995)

    Article  CAS  Google Scholar 

  5. Datta, S.: Electronic Transport Properties in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  6. Kawano, H. C. Chiamori, M. Suter, Q. Zhou, B. D. Sosnowchik, Lin, L.: An electrothermal carbon nanotube gas sensor, Nano Lett. 7(12), 3686–3690 (2007)

    Google Scholar 

  7. Jacobs, C.B., Peairs, M.J., Venton, B.J.: Review: carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 662, 105–127 (2010)

    Article  CAS  Google Scholar 

  8. Avouris, P., Freitag, M., Perebeinos, V.: Carbon-nanotube photonics and optoelectronics. Nat. Photonics. 2, 341–350 (2008)

    Google Scholar 

  9. Zhang,T., Mubeen, S., Myung, N.V., Deshusses, M. A.: Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19 (2008)

    Google Scholar 

  10. Morris, J.E., Iniewski, K. (eds.): Nanoelectronic Device Applications Handbook. CRC Press, Taylor & Francis (2013)

    Google Scholar 

  11. Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  CAS  Google Scholar 

  12. Aasmundtveit, K.E., Ta, B.Q., Lin, L.W., Halvorsen, E., Hoivik, N.: Direct integration of carbon nanotubes in Si microstructures. J. of Micromech. Microeng. 22 (2012)

    Google Scholar 

  13. Ebbesen, T.W., Ajayan, P.M.: Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992)

    Article  CAS  Google Scholar 

  14. Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., Wang, G.: Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996)

    Google Scholar 

  15. Guo, T., Nikolaev, P., Thess, A.: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49 (1995)

    Article  CAS  Google Scholar 

  16. Aasmundtveit, K.E., Ta, B.Q., Hoivik, N., Halvorsen, E.: Electrical control on synthesis conditions for locally grown CNTs on polysilicon microstructures. In: Morris, J.E., Iniewski, K. (eds.) Nanoelectronic Device Applications Handbook, CRC Press, Taylor & Francis (2013)

    Google Scholar 

  17. Brown, J.J., Suk, J.W., Singh, G., Baca, A.I., Dikin, D.A., Ruoff, R.S., Bright, V.M.: Microsystem for nanofiber electromechanical measurements. Sens. Actuators, A 155, 1–7 (2009)

    Article  CAS  Google Scholar 

  18. Qingqing, G., Albert, E., Fabel, B., Abdellah, A., Lugli, P., Chan-Park, M.B., Scarpa, G.: Solution-processable random carbon nanotube networks for thin-film transistors, 11th IEEE Conference on Nanotechnology (IEEE-NANO), 2011, pp. 378–381 (2011)

    Google Scholar 

  19. Cullinan, M.A., Culpepper, M.L.: Design and fabrication of single chirality carbon nanotube-based sensors, 11th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 26–29, (2011)

    Google Scholar 

  20. Lee, S.W., Campbell, E.E.B.: Nanoelectromechanical devices with carbon nanotubes. Curr. Appl. Phy. 13, 1844–1859 (2013)

    Google Scholar 

  21. Patil, N., Lin, A., Myers, E.R., Koungmin, R., Badmaev, A., Chongwu, Z., Wong, H.S.P., Mitra, S.: Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans Nanotech 8, 498–504 (2009)

    Article  Google Scholar 

  22. Englander, O., Christensen, D., Lin, L.: Local synthesis of silicon nanowires and carbon nanotubes on microbridges. Appl. Phy. Lett. 82, 4797–4799 (2003)

    Google Scholar 

  23. Christensen, D., Englander, O., Jongbaeg, K., Lin, L.: Room temperature local synthesis of carbon nanotubes. Nanotechnology, 2003. Third IEEE Conference on IEEE-NANO 2003, 2, 581–584, (2003)

    Google Scholar 

  24. Hierold, C., Jungen,A., Stampfer, C., Helbling, T.: Nano electromechanical sensors based on carbon nanotubes. Sens. Actuators a-Phys 136, 51–61 (2007)

    Google Scholar 

  25. Dittmer, S., Nerushev, O.A., Campbell, E.E.B.: Low ambient temperature CVD growth of carbon nanotubes. Appl. Phys. Mater. Sci. Process. 84, 243–246 (2006)

    Google Scholar 

  26. Ta, B.Q., Hoivik, N., Halvorsen, E., Aasmundtveit, K.E.: Electrical control of synthesis conditions for locally grown CNTs on polysilicon microstructure. 11th IEEE Conference on Nanotechnology (IEEE-NANO) 2011, pp. 374–377, (2011)

    Google Scholar 

  27. Miller, D.C., Boyce, B.L., Dugger, M.T., Buchheit, T.E., Gall, K.: Characteristics of a commercially available silicon-on-insulator MEMS material. Sens. Actuators Phys. 138, 130–144 (2007)

    Article  CAS  Google Scholar 

  28. Nguyen, Q.H.: Catalyst Preparation for Local Synthesis of Carbon Nanotubes. Vestfold University College, Borre (2012)

    Google Scholar 

  29. Ta, B.Q., Halvorsen, E., Hoivik, N., Aasmundtveit, K.E.: Diameter dependency for the electric-field-assisted growth of carbon nanotubes. Appl. Phys. Lett. 103, 16 (2013)

    Google Scholar 

  30. Haugen, T.B.: Synthesis and Characterization of Locally Grown Carbon Nanotubes. Vestfold University College, Borre (2013)

    Google Scholar 

  31. Nguyen, Q.H., Ta, B.Q., Hoivik, N., Halvorsen, E., Aasmundtveit, K.E.: CNT-based gas sensor for expiration detection of perishable food, Presented at the IEEE Nano 2013, Beijing, China, (2013)

    Google Scholar 

  32. Ta, B.Q., Ngo, A.V., Nguyen, Q.H., Hoivik, N., Halvorsen, E., Aasmundtveit, K.E.: Deposition of Pd on suspended and locally grown CNTs using thermal evaporation. Presented at the IEEE Nano 2013, Beijing, China, (2013)

    Google Scholar 

Download references

Acknowledgments

The Research Council of Norway is acknowledged for grants to support the NORFAB infrastructure. My colleagues and coworkers, Profs. Einar Halvorsen and Nils Hoivik, are greatly acknowledged for their contributions in this shared research task. Many thanks to present and former students, without whose efforts this research had not been possible: Bao Quoc Ta, Quoc-Huy Nguyen, Tormod B. Haugen, Van Anh Ngo and T.A. Thy Nguyen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut E. Aasmundtveit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aasmundtveit, K.E. (2015). Direct Integration of Carbon Nanotubes in Si Microsystems. In: Baillin, X., Joachim, C., Poupon, G. (eds) Nanopackaging: From Nanomaterials to the Atomic Scale. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-21194-7_4

Download citation

Publish with us

Policies and ethics