Skip to main content

Packaging of Buckyballs/Buckytubes in Transparent Photo-Active Inorganic Polymers: New Hope in the Area of Electronics and Optoelectronics

  • Conference paper
  • First Online:
Book cover Nanopackaging: From Nanomaterials to the Atomic Scale

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 610 Accesses

Abstract

Pb-phosphate glass-based optically transparent and light sensitive two composites, one containing C60-fullerene and the other single-walled carbon nanotubes (SWCNTs), have been prepared by melt-quenched technique, and their optical, electronic, and optoelectronic properties have been studied. Absorption studies of the SWCNT-composite show that the SWCNTs in this system suffer massive conformational deformations and as consequence band structure modulations. Conductivity measurements have revealed that the presence of SWCNTs in the host glass, which is basically an insulator, increases the conductivity of the host almost by hundred thousand times. UV–Vis light-induced absorption (LIA) and UV–Vis light-induced ESR (LIESR) studies in the case of C60-composite and similar LIESR and conductivity studies in the case of SWCNT-composite show that both the composites suffer a light-induced charge separation phenomenon, which involves electron transfer from the divalent (Pb2+)-center of the host to their respective electron acceptor (C60/SWCNT). Related charge transfer products are: Pb3+-holes and C60-anions in the case of the fullerene composite; and Pb3+-holes and conduction electron rich SWCNT anions in the case of the SWCNT-composite. The conductivity properties of the SWCNT-composite, suggest a possibility of its use as a transparent electrode, while the photo-induced charge—separation phenomenon of both the composites indicates prospect of their use as solar photo → current converter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, W., et al.: Metallic SWCNTs for conductive composites. J. Am. Chem. Soc. 130, 1415–1419 (2008)

    Article  CAS  Google Scholar 

  2. Green, A.A., et al.: Colored semitransparent conductive coatings consisting of monodisperse metallic SWCNTs. Nano Lett. 8, 1417–1422 (2008)

    Article  CAS  Google Scholar 

  3. Journet, C., Maser, W.K., et al.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)

    Article  CAS  Google Scholar 

  4. Kazaoui, S., et al.: Pressure dependence of the optical absorption spectra of SWCNT-film. Phys. Rev. B 62, 164346 (2000)

    Article  Google Scholar 

  5. Balaji, S., Debnath, R.: Internal stress induced metallization of single-walled carbon nanotubes in a nanotube/glass conducting composite. Nanotechnology 22(1–8), 415706 (2011)

    Article  Google Scholar 

  6. Yang, L., Han, J.: Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 85, 154–157 (2000)

    Article  CAS  Google Scholar 

  7. Yu, G., Gao, J., et al.: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)

    Article  CAS  Google Scholar 

  8. Kymakis, E., et al.: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002)

    Article  CAS  Google Scholar 

  9. Kongkanand, A., et al.: Electron storage in SWCNTs. Fermi level equilibration in semiconductor-SWCNT suspension. ACS Nano 1, 13–21 (2007)

    Article  CAS  Google Scholar 

  10. Voroshazi, E., et al.: Long-term operational lifetime and degradation analysis of P3HT: PCBM photovoltaic cell. Sol. Energy Mater. Sol. Cells 95, 1303–1307 (2011)

    Article  CAS  Google Scholar 

  11. Griscom, D.L.: Electron spin resonance in glasses. J. Non-Cryst. Solids 40, 211–272 (1980)

    Article  CAS  Google Scholar 

  12. Sahoo, R., Debnath, R.: Long-lived photoinduced charge separation in C60/(Zinc, Lead) phosphate glass composites. Adv. Mater. 15, 287–290 (2003)

    Article  CAS  Google Scholar 

  13. Bocharova, T.V., et al.: Effect of gama radiation on optical and EPR absorption spectra of phosphate and fluoride glasses containing lead. Glass Phys. Chem. 31, 738–748 (2005)

    Google Scholar 

  14. Balaji, S., et al.: Single-walled carbon nanotube/(Pb, Zn)-phosphate glass heterostructure: an optical sensor and efficient photocurrent converter. J. Phys. D, (Appl. Phys.). 45(1–7), 325106 (2012)

    Google Scholar 

  15. Wildoer, J.W.G., et al.: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)

    Article  CAS  Google Scholar 

  16. Maniwa, Y., et al.: Thermal expansion of single-walled carbon nanotube, SWNT-bundles: X-ray diffraction studies. Phys. Rev. B 64, 241402 (2001)

    Article  Google Scholar 

  17. Sharma, S.M., et al.: Pressure-induced phase transformation and structural resilience of single-wall carbon nanotube bundles, Phys. Rev. B. 63, 205417 -5 (2001)

    Google Scholar 

  18. Tang, J., Qin, L.-C., et al.: Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure. Phys. Rev. Lett. 85, 1887–1889 (2000)

    Article  CAS  Google Scholar 

  19. Fuhrer, M.S., et al.: Crossed nanotube junctions. Science 288, 494–497 (2000)

    Article  CAS  Google Scholar 

  20. Bekyarova, E., et al.: Electronic properties of SWCNT-network. J. Am. Chem. Soc. 127, 5990–5995 (2005)

    Article  CAS  Google Scholar 

  21. Sheng, P.: Fluctuation induced tunneling conduction in disordered materials. Phys. Rev. B 21, 2180–2195 (1980)

    Article  CAS  Google Scholar 

  22. Kaiser, A.B., et al.: Heterogeneous model for conduction in carbon nanotubes. Phys. Rev. B 57, 1418–1421 (1998)

    Article  CAS  Google Scholar 

  23. Kymakis, E., et al.: Electrical properties SWCNT-polymer composite films. J. Appl. Phys. 99, 084302 (2006)

    Article  Google Scholar 

  24. Kaiser, A.B., et al.: Some problems in understanding the electronic transport properties of carbon nanotube ropes. Curr. Appl. Phys. 1, 50–55 (2001)

    Article  Google Scholar 

  25. Kratschmer, W., et al.: Solid C60: a new form of carbon. Nature 347, 354–358 (1990)

    Article  Google Scholar 

  26. Sun, Y.P., et al.: All-carbon polymers (polyfullerenes) from photochemical reactions of fullerene clusters in room-temperature solvent mixtures. J. Am. Chem. Soc. 117(12), 709–711 (1995)

    Article  Google Scholar 

  27. Lee, K., et al.: Direct evidence of photoinduced electron transfer in conducting-polymer–C60 composites by infrared photoexcitation spectroscopy. Phys. Rev. B 49, 5781–5784 (1994)

    Article  CAS  Google Scholar 

  28. Stasko, A., et al.: EPR study of fullerene radicals generated in photosensitized TiO2 suspensions. J. Phys. Chem. 99, 8782–8789 (1995)

    Google Scholar 

  29. Tachiya, M., et al.: Decay of trapped electrons by tunneling to scavenger molecules in low temperature glasses. Chem. Phys. Lett. 28, 87–89 (1974)

    Article  CAS  Google Scholar 

  30. Guskos, N., et al.: Ferromagnetic resonance and compressive strength study of cement mortars containing carbon encapsulated nickel and iorn nanoparticles. Rev. Adv. Mater. Sci. 23, 113–117 (2010)

    CAS  Google Scholar 

  31. Wu, W., et al.: PVK modified SWCNTs with effective photoinduced electron transfer. Macromolecules 36, 6286–6288 (2003)

    Article  CAS  Google Scholar 

  32. Rice, W.D., et al.: Enhancement of the electron spin resonance of single-walled carbon nanotubes by oxygen removal. ACS Nano 6, 2165–2173 (2012)

    Article  CAS  Google Scholar 

  33. Freitag, M., et al.: Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003)

    Article  CAS  Google Scholar 

  34. Gabor, N.M., et al.: Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the grant-in-aid received from CSIR, India, under Emeritus Scientist Scheme in this work. He also thanks Dr. R. Sahoo, S. Balaji and S. Bose, who were involved at different phases of the work presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhaballabh Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Debnath, R. (2015). Packaging of Buckyballs/Buckytubes in Transparent Photo-Active Inorganic Polymers: New Hope in the Area of Electronics and Optoelectronics . In: Baillin, X., Joachim, C., Poupon, G. (eds) Nanopackaging: From Nanomaterials to the Atomic Scale. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-21194-7_10

Download citation

Publish with us

Policies and ethics