Skip to main content

Abstract

The concept of “ambient electronics”, referring to electronics embedded extensively in common environments, has emerged in recent years. Embedding intelligence in surfaces such as walls, ceilings, clothes and packages will improve safety, security and convenience in everyday life [1]. We will refer to these novel applications as “smart systems-on-foil”. Such systems require characteristics that are not met by silicon-based technologies, for example mechanical flexibility and large-area integration at a low cost. The standard crystalline and amorphous silicon technologies require high processing temperatures which are incompatible with flexible surfaces [2]. The possible alternative solutions, such as the thin chip technology [3] and substrate transfer from silicon-on-insulator wafers [4], currently require a fabrication procedure that is not suitable to large-area applications, is complex and, hence, costly. Therefore, there is a growing need for technologies to build electronics with different characteristics from what mainstream silicon technology provides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A thin film of silicon is built on a layer of oxide lying on a thick silicon substrate, later removed by subtracting methods.

  2. 2.

    The material in solution is used as “ink” in an inkjet printer to form droplets using techniques such as thermal or piezoelectric drop-on-demand (DOD) [49].

  3. 3.

    The ink is pushed through a screen comprising a fine mesh. The pattern is defined by filling certain openings of the mesh with a stencil material [51].

  4. 4.

    In this work, the term “unipolar” is used for technologies incorporating only one type of transistor (p- or n-type).

  5. 5.

    Zero-gate-source voltage. This kind of load is used only for technologies which provide normally-on (or depletion) transistors.

  6. 6.

    A type of reader-talks-first protocol, patented by Friendly Technologies Ltd., in which the RFID tag only sends a reply to the reader when it receives its unique identity code.

References

  1. T. Someya, Ambient electronics with organic transistors, in IEEE Symposium on VLSI Circuits (IEEE, Washington, DC, 2007), pp. 116–119

    Google Scholar 

  2. H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39, 2643–2666 (2010)

    Article  Google Scholar 

  3. J. Burghartz et al., Ultra-thin chips and related applications, a new paradigm in silicon technology, in Proceedings of the European Solid-State Circuits Conference (IEEE, Washington, DC, 2009), pp. 28–35

    Google Scholar 

  4. R. Dekker et al., Substrate transfer: enabling technology for RF applications, in International Electron Devices Meeting. Digest Technical Papers (IEEE, Washington, DC, 2003), pp. 371–374

    Google Scholar 

  5. A. Knobloch et al., Fully printed integrated circuits from solution processable polymers. J. Appl. Phys. 96, 2286–2291 (2004)

    Article  Google Scholar 

  6. M. Bohm et al., Printable electronics for polymer RFID applications, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2006), pp. 1034–1035

    Google Scholar 

  7. R. Blache et al., Organic CMOS circuits for RFID applications, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2009), pp. 208–209

    Google Scholar 

  8. T. Someya et al., Printed organic transistors: toward ambient electronics, in International Electron Devices Meeting (IEEE, Washington, DC, 2009), pp. 1–6

    Google Scholar 

  9. W. Smaal et al., Complementary integrated circuits on plastic foil using inkjet printed n- and p-type organic semiconductors: fabrication, characterization, and circuit analysis. Org. Electron. 13, 1686–1692 (2012)

    Article  Google Scholar 

  10. A. Daami et al., Fully printed organic CMOS technology on plastic substrates for digital and analog applications, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2011), pp. 328–329

    Google Scholar 

  11. H. Kempa et al., Complementary ring oscillator exclusively prepared by means of gravure and flexographic Printing. IEEE Trans. Electron Devices 58(8), 2765–2769 (2011)

    Article  Google Scholar 

  12. H. Klauk et al., Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007)

    Article  Google Scholar 

  13. M. Kitamura et al., High-frequency organic complementary ring oscillator operating up to 200 kHz. Appl. Phys. Express 4, 051601 (2011)

    Article  Google Scholar 

  14. B. Crone et al., Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000)

    Article  Google Scholar 

  15. K. Ishida et al., A stretchable EMI measurement sheet with 8*8 coil array, 2V organic CMOS decoder, and -70 dBm EMI detection circuits in 0.18μm CMOS, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2009), pp. 472–474

    Google Scholar 

  16. K. Ishida et al., 100V AC power meter system-on-a-film (SoF) integrating 20V organic CMOS digital and analog circuits with floating gate for process-variation compensation and 100V organic PMOS rectifier, in IEEE International Solid State Circuits Conference Digest of Technical Papers (IEEE, Washington, DC, 2011), pp. 136–137

    Google Scholar 

  17. S. Kim et al., Ink-jet-printed organic thin-film transistors for low-voltage-driven CMOS circuits with solution-processed AlOX gate insulator. IEEE Electron Device Lett. 34(2), 307–309 (2013)

    Article  Google Scholar 

  18. M. Hambsch et al., Comparison of fully-printed unipolar and complementary organic logic gates. Org. Electron. 13, 1989–1995 (2012)

    Article  Google Scholar 

  19. K. Nomura et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)

    Article  Google Scholar 

  20. A. Tripathi et al., Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: building blocks for radio frequency identification application. Appl. Phys. Lett. 98, 162102 (2011)

    Article  Google Scholar 

  21. A. Huitema et al., Plastic transistors in active matrix displays. Nature 414(6864), 599–602 (2001)

    Article  Google Scholar 

  22. L. Zhou et al., All-organic active matrix flexible display. Appl. Phys. Lett. 88(8), 083502 (2006)

    Article  Google Scholar 

  23. P. Liu et al., Innovative voltage driving pixel circuit using organic thin-film transistor for AMOLEDs. J. Disp. Technol. 5(6), 224–228 (2009)

    Article  Google Scholar 

  24. P. Schalberger et al., A fully integrated 1-in. AMOLED display using current feedback based on a five-mask LTPS CMOS process. J. Soc. Inf. Disp. 19, 496 (2011)

    Article  Google Scholar 

  25. M. Noda et al., An OTFT-driven rollable OLED display. J. Soc. Inf. Disp. 19, 316 (2011)

    Article  Google Scholar 

  26. I. Nausieda et al., An organic active-matrix imager. IEEE Trans. Electron Devices 55(2), 527–532 (2008)

    Article  Google Scholar 

  27. T. Someya et al., Integration of organic FETs with organic photodiodes for a large-area, flexible, and lightweight sheet image scanner. IEEE Trans. Electron Devices 52, 2502–2511 (2005)

    Article  Google Scholar 

  28. I. Kymissis et al., An organic semiconductor based process for photodetecting applications, in International Electron Devices Meeting. Digest Technical Papers (IEEE, Washington, DC, 2004), pp. 15.4.1–15.4.4

    Google Scholar 

  29. H. Zan et al., Pentacene-based organic phototransistor with high sensitivity to weak light and wide dynamic range. IEEE Electron Device Lett. 31(2), 135–137 (2010)

    Article  MathSciNet  Google Scholar 

  30. T. Someya et al., Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrices. Proc. Natl. Acad. Sci. U. S. A. 102, 12321 (2005)

    Article  Google Scholar 

  31. G. Darliski et al., Mechanical force sensors using organic thin-film transistors. J. Appl. Phys. 97(9), 093708 (2005)

    Article  Google Scholar 

  32. Z. Zhu et al., Humidity sensors based on pentacene thin-film transistors. Appl. Phys. Lett. 81(24), 4643–4645 (2002)

    Article  Google Scholar 

  33. T. Sekitani et al., Stretchable organic integrated circuits for large-area electronic skin surfaces. MRS Bull. 37, 236–245 (2012)

    Article  Google Scholar 

  34. T. Someya et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004)

    Article  Google Scholar 

  35. Y. Kato et al., A flexible lightweight Braille sheet display with plastic actuators driven by an organic field-effect transistor active matrix, in International Electron Devices Meeting. Digest Technical Papers (IEEE, Washington, DC, 2005), pp. 105–108

    Google Scholar 

  36. T. Sekitani et al., A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nat. Mater. 6, 413–417 (2006)

    Article  Google Scholar 

  37. E. Cantatore et al., A 13.56-MHz RFID system based on organic transponders. IEEE J. Solid State Circ. 42, 84–92 (2007)

    Article  Google Scholar 

  38. K. Myny et al., An inductively coupled 64b organic RFID tag operating at 13.56MHz with a data rate of 787b/s, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2008), pp. 290–291

    Google Scholar 

  39. K. Myny et al., A 128b organic RFID transponder chip, including Manchester encoding and ALOHA anti-collision protocol, operating with a data rate of 1529b/s, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2009), pp. 206–207

    Google Scholar 

  40. H. Marien et al., A fully-integrated delta-sigma ADC in organic thin-film transistor technology on flexible plastic foil. IEEE J. Solid State Circ. 46(1), 276–284 (2011)

    Article  Google Scholar 

  41. W. Xiong et al., A 3V 6b successive-approximation ADC using complementary organic thin-film transistors on glass, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2010), pp. 134–135

    Google Scholar 

  42. D. Raiteri et al., An organic VCO-based ADC for quasi-static signals achieving 1LSB INL at 6b resolution, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2013), pp. 108–109

    Google Scholar 

  43. W. Xiong et al., A 3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass. IEEE J. Solid State Circ. 45(7), 1380–1388 (2010)

    Article  Google Scholar 

  44. T. Zaki et al., A 3.3V 6-bit 100kS/s current-steering digital-to-analog converter using organic p-type thin-film transistors on glass. IEEE J. Solid State Circ. 47(1), 292–300 (2012)

    Article  MathSciNet  Google Scholar 

  45. G. Gelinck et al., Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3, 106–110 (2004)

    Article  Google Scholar 

  46. P. van Lieshout et al., A flexible 240x320-pixel display with integrated row drivers manufactured in organic electronics, in IEEE International Solid State Circuits Conference Digest of Technical Papers (IEEE, Washington, DC, 2005), pp. 578–579

    Google Scholar 

  47. D. Raiteri et al., Positive-feedback level shifter logic for large-area electronics. IEEE J. Solid State Circ. 49(2), 524–535 (2014)

    Article  Google Scholar 

  48. K. Myny et al., An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil. IEEE J. Solid State Circ. 47(1), 284–291 (2012)

    Article  Google Scholar 

  49. H. Klauk, Organic Electronics: Materials, Manufacturing, and Applications (Wiley & Sons Publishers, Weinheim, 2006)

    Book  Google Scholar 

  50. C. Kjellander et al., Optimized circuit design for flexible 8-bit RFID transponders with active layer of ink-jet printed small molecule semiconductor. Org. Electron. 14, 768–774 (2013)

    Article  Google Scholar 

  51. D.R. Gamota et al., Printed Organic and Molecular Electronics (Kluwer Academic Publishers, Boston, MA, 2004)

    Book  Google Scholar 

  52. M. Rockele et al., Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs. Org. Electron. 12, 1909–1913 (2011)

    Article  Google Scholar 

  53. K. Myny et al., Bidirectional communication in an HF hybrid organic/solution-processed metal-oxide RFID tag, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2012), pp. 312–313

    Google Scholar 

  54. K. Myny et al., 8b thin-film microprocessor using a hybrid oxide organic complementary technology with inkjet-printed P2ROM memory, in IEEE International Solid State Circuits Conference. Digest of Technical Papers (IEEE, Washington, DC, 2014), pp. 486–487

    Google Scholar 

  55. H. Klauk et al., Organic complementary circuits - scaling towards low voltage and submicron channel length, in IEEE International Solid State Circuits Conference Digest of Technical Papers (IEEE, Washington, DC, 2012), pp. 41–45

    Google Scholar 

  56. H. Klauk et al., Organic thin-film transistors for flexible displays and circuits, in Annual Device Research Conference (IEEE, Washington, DC, 2012), pp. 237–238

    Chapter  Google Scholar 

  57. C. Wei et al., High-performance pentacene-based thin-film transistors and inverters with solution-processed Barium Titanium insulators. IEEE Trans. Electron Devices 59(2), 477–484 (2012)

    Article  Google Scholar 

  58. J. Li et al., The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors. Appl. Phys. Lett. 100, 033301.1–033301.4 (2012)

    Google Scholar 

  59. F. Ante et al., Submicron low-voltage organic transistors and circuits enabled by high-resolution silicon stencil masks, in International Electron Devices Meeting (IEEE, Washington, DC, 2010), pp. 516–519

    Google Scholar 

  60. H. Tseng, V. Subramanian, All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Org. Electron. 12, 249–256 (2001)

    Article  Google Scholar 

  61. H. Marien et al., Analog techniques for reliable organic circuit design on foil applied to an 18 dB single-stage differential amplifier. Org. Electron. 11, 1357–1362 (2010)

    Article  Google Scholar 

  62. S. De Vusser et al., Influence of transistor parameters on the noise margin of organic digital circuits. IEEE Trans. Electron Devices 53, 601–610 (2006)

    Article  Google Scholar 

  63. E. Cantatore, E.J. Meijer, Transistor operation and circuit performance in organic electronics, in Proceedings of the European Solid-State Circuits Conference (IEEE, Washington, DC, 2003), pp. 29–36

    Google Scholar 

  64. K. Myny et al., Unipolar organic transistor circuits made robust by dual-gate technology. IEEE J. Solid State Circ. 46, 1223–1230 (2011)

    Article  Google Scholar 

  65. D. Raiteri et al., A tunable transconductor for analog amplification and filtering based on double-gate organic TFTs, in Proceedings of the European Solid-State Circuits Conference (IEEE, Washington, DC, 2011), pp. 415–418

    Google Scholar 

  66. D. Raiteri, Technology-aware circuit design for smart sensors on plastic foils, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdinia, S., van Roermund, A.H.M., Cantatore, E. (2015). Introduction. In: Design of Organic Complementary Circuits and Systems on Foil. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-21188-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21188-6_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21187-9

  • Online ISBN: 978-3-319-21188-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics