Skip to main content

Abstract

This paper focuses on the design of amplifiers that achieve micro-volt offset by employing dynamic offset reduction techniques, which include chopping, auto-zeroing and chopper stabilization. The working principles and non-idealities of these techniques will be described. The up-modulated offset associated with chopping causes ripple, which can be a significant source of error if not filtered effectively. Thus, various ripple reduction techniques are introduced to suppress this ripple to the micro-volt level. Also discussed is the ping-pong architecture, which enables the realization of auto-zeroed amplifiers with continuous-time behavior. Examples of chopped amplifiers, auto-zeroed amplifiers and chopper stabilized amplifiers are presented, as well as designs in which multiple techniques are combined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huijsing JH (2011) Operational amplifiers: theory and design, 2nd edn. Springer, New York

    Book  Google Scholar 

  2. Xu J, Yazicioglu RF, Grundlehner B, Harpe P, Makinwa KAA, Van Hoof C (2011) A 160 μW 8-channel active electrode system for EEG monitoring. IEEE Trans Biomed Circuits Syst 5(6):555–567

    Article  Google Scholar 

  3. Enz CC, Temes GC (1996) Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE 84(11): 1584–1614

    Article  Google Scholar 

  4. Witte F, Makinwa KAA, Huijsing JH (2009) Dynamic offset compensated CMOS amplifiers. Springer, Dordrecht

    Book  Google Scholar 

  5. Kundert K. Simulating switched-capacitor filters with spectre RF. http://www.designers-guide.org/Analysis/sc-filters.pdf

  6. Opris IE, Kovacs GTAA (1996) A rail-to-rail ping-pong op-amp. IEEE J Solid State Circuits 31(9):1320–1324

    Article  Google Scholar 

  7. Menolfi C, Huang Q (1999) A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset. IEEE J Solid State Circuits 34(3):415–420

    Article  Google Scholar 

  8. Burt R, Zhang J (2006) Micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path. IEEE J Solid State Circuits 41(12):2729–2736

    Article  Google Scholar 

  9. Fan Q, Huijsing JH, Makinwa KAA (2012) A 21 nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2 μV offset. IEEE J Solid State Circuits 47(2):464–475

    Article  Google Scholar 

  10. Witte JF, Huijsing JH, Makinwa KAA (2009) A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier. In: VLIS circuits, pp 210–211

    Google Scholar 

  11. Tang ATK (2002) A 3μV-offset operational amplifier with 20 nV/√Hz input noise PSD at DC employing both chopping and auto zeroing. In: IEEE ISSCC digest of technical papers, pp 386–387

    Google Scholar 

  12. Michel F, Steyaert M (2012) On-chip gain reconfigurable 1.2 V 24μW chopping instrumentation amplifier with automatic resistor matching in 0.13 μm CMOS. In: IEEE ISSCC digest of technical papers, pp 372–374

    Google Scholar 

  13. Wu R, Makinwa KAA, Huijsing JH (2009) A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop. IEEE J Solid State Circuits 44(12):3232–3243

    Article  Google Scholar 

  14. Analog Device. Chapter 8 Analog filters. http://www.analog.com/library/analogdialogue/archives/43-09/EDCh%208%20filter.pdf

  15. Fan Q, Huijsing JH, Makinwa KAA (2013) A multi-path chopper-stabilized capacitively coupled operational amplifier with 20 V-input-common-mode range and 3 μV offset. In: IEEE ISSCC digest of technical papers, pp. 176–177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinwen Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fan, Q., Huising, J.H., Makinwa, K.A.A. (2016). Advances in Low-Offset Opamps. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-21185-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21185-5_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21184-8

  • Online ISBN: 978-3-319-21185-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics