Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP,volume 131))

Abstract

In this chapter, the overview and specifications of the desired implantable sensor system for small animal are given. The conceptual design of the implantable multi-sensor system is illustrated. The recent studies on implantable systems for small animal are investigated. In addition, the state of the art is presented. The challenges of the remotely powered system for freely moving small animal are defined. Moreover, the objectives of the overall system are presented, and the strategies are proposed to solve the defined challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Cavallini, An implantable biosensor array for personalized therapy applications. PhD thesis, IC, Lausanne, 2013

    Google Scholar 

  2. N. Cesarovic, P. Jirkof, A. Rettich, M. Arras, Implantation of radiotelemetry transmitters yielding data on ECG, heart rate, core body temperature and activity in free-moving laboratory mice. J. Vis. Exp.: JoVE 2011(57), 3260 (2011). doi:10.3791/3260

    Google Scholar 

  3. D. Fan, D. Rich, T. Holtzman, P. Ruther, J.W. Dalley, A. Lopez, M.A. Rossi, J.W. Barter, D. Salas-Meza, S. Herwik, T. Holzhammer, J. Morizio, H.H. Yin, A wireless multi-channel recording system for freely behaving mice and rats. PLoS ONE 6(7), e22033, 07 (2011)

    Google Scholar 

  4. M.M. Lawlor, The Propoer Care of Laboratory Rodents (Animal Welfare Institute, Washington, DC, 1997)

    Google Scholar 

  5. E. Meng, T. Hoang, MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv. Drug Deliv. Rev. 64(14), 1628–1638 (2012)

    Article  Google Scholar 

  6. P. Chang, K.S. Hashemi, M.C. Walker, A novel telemetry system for recording EEG in small animals. J. Neurosci. Methods 201(1), 106–115 (2011)

    Article  Google Scholar 

  7. C.M. Sherwin, Comfortable Quarters for Mice in Research Institutions, 9 edn. (Animal Welfare Institute, Washington, DC, 2002)

    Google Scholar 

  8. Q. Wang, H.R. Brunner, M. Burnier, Determination of cardiac contractility in awake unsedated mice with a fluid-filled catheter. Am. J. Physiol. – Heart Circ. Physiol. 286(2), H806–H814 (2004)

    Google Scholar 

  9. A. Bartolomucci, P. Palanza, P. Sacerdote, G. Ceresini, A. Chirieleison, A.E. Panerai, S. Parmigiani, Individual housing induces altered immuno-endocrine responses to psychological stress in male mice. Psychoneuroendocrinology 28(4), 540–558 (2003)

    Article  Google Scholar 

  10. I.A.S. Olsson, K. Dahlborn, Improving housing conditions for laboratory mice: a review of’environmental enrichment’. Lab. Anim. 36(3), 243–270 (2002)

    Article  Google Scholar 

  11. H. Wurbel, Ideal homes? housing effects on rodent brain and behaviour. TRENDS Neurosci. 24(4), 207–211 (2001)

    Article  Google Scholar 

  12. M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 3(3), 169–180 (2009)

    Article  Google Scholar 

  13. V.M. Tolosa, K.M. Wassum, N.T. Maidment, H.G. Monbouquette, Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode array microprobe. Biosens. Bioelectron. 42 (15), 256–260 (2012). ISSN:0956-5663

    Google Scholar 

  14. S. Carrara, A. Cavallini, V. Erokhin, G. De Micheli, Multi-panel drugs detection in human serum for personalized therapy. Biosens. Bioelectron. 26(9), 3914–3919 (2011)

    Article  Google Scholar 

  15. S. Carrara, M.D. Torre, A. Cavallini, D. De Venuto, G. De Micheli, Multiplexing ph and temperature in a molecular biosensor, in Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE, Cyprus (2010), pp. 146–149

    Google Scholar 

  16. J.H. Park, J. Platisa, J.V. Verhagen, S.H. Gautam, A. Osman, D. Kim, V.A. Pieribone, E. Culurciello, Head-mountable high speed camera for optical neural recording. J. Neurosci. Methods 201(2), 290–295 (2011)

    Article  Google Scholar 

  17. S. Yang, J. Cho, S. Lee, K. Park, J. Kim, Y. Huh, E.-S. Yoon, H.-S. Shin, Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice. J. Neurosci. Methods 195(2), 117–127 (2011)

    Article  Google Scholar 

  18. M. Azin, D.J. Guggenmos, S. Barbay, R.J. Nudo, P. Mohseni, A miniaturized system for spike-triggered intracortical microstimulation in an ambulatory rat. IEEE Trans. Biomed. Eng. 58(9), 2589–2597 (2011)

    Article  Google Scholar 

  19. E. Greenwald, M. Mollazadeh, C. Hu, W. Tang, E. Culurciello, V. Thakor, A VLSI neural monitoring system with ultra-wideband telemetry for awake behaving subjects. IEEE Trans. Biomed. Circuits Syst. 5(2), 112–119 (2011)

    Article  Google Scholar 

  20. I. Nölte, S. Gorbey, H. Boll, G. Figueiredo, C. Groden, B. Lemmer, M.A. Brockmann, Maintained functionality of an implantable radiotelemetric blood pressure and heart rate sensor after magnetic resonance imaging in rats. Physiol. Meas. 32(12), 1941 (2011)

    Google Scholar 

  21. J. Senarathna, K. Murari, R. Etienne-Cummings, N.V. Thakor, A miniaturized platform for laser speckle contrast imaging. IEEE Trans. Biomed. Circuits Syst. 6(5), 437–445 (2012)

    Article  Google Scholar 

  22. D. Zhang, Y. Dong, M. Li, H. Wang, A radio-telemetry system for navigation and recording neuronal activity in free-roaming rats. J. Bionic Eng. 9(4), 402–410 (2012)

    Article  Google Scholar 

  23. C. Zuo, X. Yang, Y. Wang, C.E. Hagains, A.-L. Li, Y.B. Peng, J.-C. Chiao, A digital wireless system for closed-loop inhibition of nociceptive signals. J. Neural Eng. 9(5), 056010 (2012)

    Google Scholar 

  24. S.-Y. Lee, M.Y. Su, M.-C. Liang, Y.-Y. Chen, C.-H. Hsieh, C.-M. Yang, H.-Y. Lai, J.-W. Lin, Q. Fang, A programmable implantable microstimulator SoC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Trans. Biomed. Circuits Syst. 5(6), 511–522 (2011)

    Article  Google Scholar 

  25. I.-T. Hsieh, C.C.-H. Yang, C.-Y. Chen, G.-S. Lee, F.-J. Kao, K.-L. Kuo, T.B.-J. Kuo, Uninterrupted wireless long-term recording of sleep patterns and autonomic function in freely moving rats. J. Med. Biol. Eng. 33(1), 79–86 (2013)

    Article  Google Scholar 

  26. P. Cong, W.H. Ko, D.J. Young, Wireless batteryless implantable blood pressure monitoring microsystem for small laboratory animals. IEEE Sens. J. 10(2), 243–254 (2010)

    Article  Google Scholar 

  27. N. Chaimanonart, M.D. Zimmerman, D.J. Young, Adaptive RF power control for wireless implantable bio-sensing network to monitor untethered laboratory animal real-time biological signals, in 2008 IEEE Sensors, Lecce (2008), pp. 1241–1244

    Google Scholar 

  28. G. Charvet, M. Foerster, S. Filipe, J. Porcherot, J.F. Bêche, R. Guillemaud, P. Audebert, G. Régis, B. Zongo, S. Robinet, C. Condemine, Y. Tetu, F. Sauter, C. Mestais, A.L. Benabid, WIMAGINE: a wireless, low power, 64-channel ecog recording platform for implantable BCI applications, in 2011 5th International IEEE/EMBS Conference on Neural Engineering (NER), Cancun (IEEE, 2011), pp. 356–359

    Google Scholar 

  29. D.M. Russell, D. McCormick, A.J. Taberner, S.C. Malpas, D.M. Budgett, A high bandwidth fully implantable mouse telemetry system for chronic ECG measurement, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston (2011), pp. 7666–7669

    Google Scholar 

  30. C.T. Wentz, J.G. Bernstein, P. Monahan, A. Guerra, A. Rodriguez, E.S. Boyden, A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng. 8(4), 046021 (2011)

    Google Scholar 

  31. C.-W. Chang, J.-C. Chiou, A wireless and batteryless microsystem with implantable grid electrode/3-dimensional probe array for ECoG and extracellular neural recording in rats. Sensors 13(4), 4624–4639 (2013)

    Article  Google Scholar 

  32. E.G. Kilinc, A.C. Moya, H. van Lintel, P. Renaud, F. Maloberti, Q. Wang, C. Dehollain, Remotely powered implantable heart monitoring system for freely moving animals, in 2013 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Bari (2013), pp. 10–13

    Google Scholar 

  33. R. Sobot, Implantable RF telemetry for cardiac monitoring in the murine heart: a tutorial review. EURASIP J. Embed. Syst. 2013(1), 1–15 (2013)

    Article  Google Scholar 

  34. Y.-K. Song, W.R. Patterson, C.W. Bull, D.A. Borton, Y. Li, A.V. Nurmikko, J.D. Simeral, A brain implantable microsystem with hybrid RF/IR telemetry for advanced neuroengineering applications, in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, EMBS 2007, Lyon (IEEE, 2007), pp. 445–448

    Google Scholar 

  35. H.-M. Lee, M. Ghovanloo, An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Trans. Circuits Syst. I: Regul. Pap. 58(8), 1749–1760 (2011)

    Article  MathSciNet  Google Scholar 

  36. U. Bihr, M. Ortmanns, A front-end circuit with active spike and LFP separation via a switched capacitor filter structure for neural recording applications, in 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul (IEEE, 2012), pp. 2231–2234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kilinc, E.G., Dehollain, C., Maloberti, F. (2016). Implantable Monitoring System for Rodents. In: Remote Powering and Data Communication for Implanted Biomedical Systems. Analog Circuits and Signal Processing, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-21179-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21179-4_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21178-7

  • Online ISBN: 978-3-319-21179-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics