Skip to main content

T Cell Modulation: Anti-PD-1 Antibodies for the Treatment of Cancer

  • Chapter
Book cover Developments in T Cell Based Cancer Immunotherapies

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1765 Accesses

Abstract

The expression of inhibitory receptors on tumor specific T cells leads to compromised effector function such as decreased proliferation, cytokine secretion, and tumor cell lysis. These receptors can be targeted therapeutically using monoclonal antibodies, an approach that was termed “checkpoint blockade”. The improved survival of advanced melanoma patients treated with the anti-CTLA-4 antibody ipilimumab validates this new treatment concept. Inhibition of another inhibitory pathway, PD-1/PD-L1, using monoclonal antibodies has recently shown much promise in the treatment of melanoma, renal cell cancer, non-small cell lung cancer, among other tumor types. Durable anti-tumor activity with a favorable safety profile has lead to fast paced clinical development of many compounds targeting both PD-1 and PD-L1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  CAS  PubMed  Google Scholar 

  3. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    Article  CAS  PubMed  Google Scholar 

  6. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  7. Eppihimer MJ, Gunn J, Freeman GJ et al (2002) Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 9:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schreiner B, Mitsdoerffer M, Kieseier BC et al (2004) Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol 155:172–182

    Article  CAS  PubMed  Google Scholar 

  9. Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  CAS  PubMed  Google Scholar 

  10. Tseng SY, Otsuji M, Gorski K et al (2001) B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 193:839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parsa AT, Waldron JS, Panner A et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88

    Article  CAS  PubMed  Google Scholar 

  12. Carter L, Fouser LA, Jussif J et al (2002) PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol 32:634–643

    Article  CAS  PubMed  Google Scholar 

  13. Bennett F, Luxenberg D, Ling V et al (2003) Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol 170:711–718

    Article  CAS  PubMed  Google Scholar 

  14. Fife BT, Bluestone JA (2008) Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 224:166–182

    Article  CAS  PubMed  Google Scholar 

  15. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    Article  CAS  PubMed  Google Scholar 

  16. Okazaki T, Tanaka Y, Nishio R et al (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9:1477–1483

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T (2005) Establishment of NOD-Pdcd1−/− mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A 102:11823–11828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flies DB, Sandler BJ, Sznol M, Chen L (2011) Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med 84:409–421

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12:492–499

    Article  CAS  PubMed  Google Scholar 

  20. Barber DL, Wherry EJ, Masopust D et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    Article  CAS  PubMed  Google Scholar 

  21. Liang SC, Latchman YE, Buhlmann JE et al (2003) Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 33:2706–2716

    Article  CAS  PubMed  Google Scholar 

  22. Keir ME, Liang SC, Guleria I et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203:883–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ansari MJ, Salama AD, Chitnis T et al (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu B, Guleria I, Khosroshahi A et al (2006) Differential role of programmed death-ligand 1 [corrected] and programmed death-ligand 2 [corrected] in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J Immunol 176:3480–3489

    Article  CAS  PubMed  Google Scholar 

  25. Nishimura H, Okazaki T, Tanaka Y et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322

    Article  CAS  PubMed  Google Scholar 

  26. Fife BT, Guleria I, Gubbels Bupp M et al (2006) Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 203:2737–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thompson RH, Gillett MD, Cheville JC et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A 101:17174–17179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hamanishi J, Mandai M, Iwasaki M et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104:3360–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Inman BA, Sebo TJ, Frigola X et al (2007) PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109:1499–1505

    Article  CAS  PubMed  Google Scholar 

  32. Nakanishi J, Wada Y, Matsumoto K, Azuma M, Kikuchi K, Ueda S (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56:1173–1182

    Article  CAS  PubMed  Google Scholar 

  33. Nomi T, Sho M, Akahori T et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157

    Article  CAS  PubMed  Google Scholar 

  34. Wu C, Zhu Y, Jiang J, Zhao J, Zhang XG, Xu N (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108:19–24

    Article  PubMed  Google Scholar 

  35. Liu J, Hamrouni A, Wolowiec D et al (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110:296–304

    Article  CAS  PubMed  Google Scholar 

  36. Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ (2006) Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 30:802–810

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rosenwald A, Wright G, Leroy K et al (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198:851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamura H, Dan K, Tamada K et al (2005) Expression of functional B7-H2 and B7.2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin Cancer Res 11:5708–5717

    Article  CAS  PubMed  Google Scholar 

  39. Xerri L, Chetaille B, Serriari N et al (2008) Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol 39:1050–1058

    Article  CAS  PubMed  Google Scholar 

  40. Taube JM, Anders RA, Young GD et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127ra37.

    Google Scholar 

  41. Brahmer JR, Topalian S, Wollner I, Powderly JD, Picus J, Drake C, Covino J, Korman A, Pardoll D, Lowy I (2008) Safety and activity of MDX-1106 (ONO-4538), an anti-PD-1 monoclonal antibody, in patients with selected refractory or relapsed malignancies. J Clin Oncol 26(15S):3000

    Google Scholar 

  42. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sznol M, Kluger H, Hodi F, David F, McDermott RDC, Carvajal RD, Lawrence DP, Topalian SL, Atkins MB, Powderly JD, Sharfman WH, Puzanov I, Smith DC, Wigginton JM, Kollia G, Gupta AK, Sosman JA (2013) Survival and long-term follow-up of safety and response in patients (pts) with advanced melanoma (MEL) in a phase I trial of nivolumab (anti-PD-1; BMS-936558; ONO-4538). J Clin Oncol 31 (Suppl; abstr CRA9006)

    Google Scholar 

  45. Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144.

    Google Scholar 

  46. Hamid O, Sosman JA, Lawrence DP, Sullivan RJ, Ibrahim N, Kluger HM, Boasberg PD, Flaherty K, Hwu P, Ballinger M, Mokatrin A, Kowanetz M, Chen DS, Stephen Hodi F (2013) Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic melanoma (mM). J Clin Oncol 31 (Suppl; abstr CRA9006^); 31, 2013 (suppl; abstr 9010)

    Google Scholar 

  47. Soria JEA (2013) Clinical activity, safety and biomarkers of PD-L1 blockade in non-small cell lung cancer (NSCLC): additional analyses from a clinical study of the engineered antibody MPDL3280A (anti-PDL1). In: The 2013 European Cancer Congress is the 17th congress of the European CanCer Organisation (ECCO), the 38th congress of the European Society for Medical Oncology (ESMO) and the 32nd congress of European Society for Therapeutic Radiology and Oncology (ESTRO) 2013, Amsterdam

    Google Scholar 

  48. Tabernero JPJ, Hamid O, Gordon MS, Fisher GA, Braiteh FS, Garbo LE, Fine GD, Kowanetz M, McCall B, Shen X, Chen DS, Kohrt HE (2013) Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic CRC, gastric cancer (GC), SCCHN, or other tumors. In: ASCO Annual Meeting 2013, Chicago

    Google Scholar 

  49. Khleif SN, Lutzky J, Segal NH, Antonia S, Blake-Haskins A, Stewart R et al (2013) MEDI4736, an anti-PD-L1 antibody with modified Fc domain: preclinical evaluation and early clinical results from a phase I study in patients with advanced solid tumors. In: Proceedings from the European Cancer Congress 2013, 2013 September 27–October 1, Amsterdam. Abstract No. 802

    Google Scholar 

  50. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goldberg MV, Drake CG (2011) LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol 344:269–278

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Anderson AC (2012) Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol 24:213–216

    Article  CAS  PubMed  Google Scholar 

  53. Watanabe N, Gavrieli M, Sedy JR et al (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4:670–679

    Article  CAS  PubMed  Google Scholar 

  54. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P et al (2010) Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A 107:7875–7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou Q, Munger ME, Veenstra RG et al (2011) Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117:4501–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fourcade J, Sun Z, Benallaoua M et al (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A 107:4275–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Google Scholar 

  60. Grosso J, Horak CE, Inzunza D, Cardona DM, Simon JS, Gupta AK, Sankar V, Park J-S, Kollia G, Taube JM, Anders R, Jure-Kunkel M, Novotny J, Jr., Taylor CR, Zhang X, Phillips T, Simmons P, Cogswell J (2013) Association of tumor PD-L1 expression and immune biomarkers with clinical activity in patients (pts) with advanced solid tumors treated with nivolumab (anti-PD-1; BMS-936558; ONO-4538). In: 2013 ASCO Annual Meeting

    Google Scholar 

  61. Hamid O, Sosman JA, Lawrence DP, Sullivan RJ, Ibrahim N, Kluger HM, Boasberg PD, Flaherty K, Hwu P, Ballinger M, Mokatrin A, Kowanetz M, Chen DS, Stephen Hodi F (2013) Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic melanoma (mM). J Clin Oncol 31 (Suppl; abstr CRA9006^) 2013;31, 2013 (suppl; abstr 9010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Ott M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ott, P.A., Hodi, F.S. (2015). T Cell Modulation: Anti-PD-1 Antibodies for the Treatment of Cancer. In: Ascierto, P., Stroncek, D., Wang, E. (eds) Developments in T Cell Based Cancer Immunotherapies. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-21167-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21167-1_10

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-21166-4

  • Online ISBN: 978-3-319-21167-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics