Skip to main content

Scalarization Methods in Multiobjective Optimization, Robustness, Risk Theory and Finance

  • Chapter
Multiple Criteria Decision Making in Finance, Insurance and Investment

Part of the book series: Multiple Criteria Decision Making ((MCDM))

  • 1363 Accesses

Abstract

We show that scalarization techniques are very important tools in several fields of mathematics, especially in multiobjective optimization, uncertain optimization, risk theory and finance. Specifically, we consider randomness in scalar optimization problems and explore important connections between a nonlinear scalarization technique, robust optimization and coherent risk measures. Furthermore, we discuss a new model for a Private Equity Fund based on stochastic differential equations. In order to find efficient strategies for the fund manager we formulate a stochastic multiobjective optimization problem for a Private Equity Fund. Using a special case of the nonlinear scalarization technique, the ε-constraint method, we solve this stochastic multiobjective optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artzner, P., Delbean, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton, NJ: Princeton University Press.

    Book  MATH  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769–805.

    Article  MathSciNet  MATH  Google Scholar 

  • Carrizosa, E., & Nickel, S. (1998). Robust facility location. Mathematical Methods in Operations Research, 58, 331–349.

    Article  MathSciNet  Google Scholar 

  • Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making (North-Holland series in system science and engineering, Vol. 8). New York: North-Holland Publishing Co.

    MATH  Google Scholar 

  • de Malherbe, E. (2005). A model for the dynamics of private equity funds. Journal of Alternative Investments, 8, 82–89.

    Article  Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization. New York: Springer.

    MATH  Google Scholar 

  • Eichfelder, G. (2008). Adaptive scalarization methods in multiobjective optimization (Vector optimization). Berlin: Springer.

    Book  MATH  Google Scholar 

  • El Ghaoui, L., & Lebret, H. (1997). Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications, 18, 1034–1064.

    Article  Google Scholar 

  • Fischetti, M., Salvagnin, D., & Zanette, A. (2009). Fast approaches to improve the robustness of a railway timetable. Transportation Science, 43, 321–335.

    Article  Google Scholar 

  • Föllmer, H., & Schied, A. (2004). Stochastic finance. Berlin: Walter de Gruyter.

    Book  MATH  Google Scholar 

  • Gerth (Tammer), C., & Weidner, P. (1990). Nonconvex separation theorems and some applications in vector optimization. Journal of Optimization Theory and Applications, 67, 297–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., & Schöbel, A. (2011). The price of robustness in timetable information (OpenAccess Series in Informatics (OASIcs), Vol. 20, pp. 76–87). Dagstuhl: Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

    Google Scholar 

  • Goerigk, M., Knoth, M., Müller-Hannemann, M., Schmidt, M., & Schöbel, A. (2014). The price of strict and light robustness in timetable information. Transportation Science, 48(2), 225–242.

    Article  Google Scholar 

  • Göpfert, A., Riahi, H., Tammer, C., & Zălinescu, C. (2003). Variational methods in partially ordered spaces. New York: Springer.

    MATH  Google Scholar 

  • Haimes, Y. Y., Lasdon, L. S., & Wismer, D. A. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transaction on Systems, Man, and Cybernetics, 1, 296–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Hernández, E., & Rodríguez-Marín, L. (2007). Nonconvex scalarization in set optimization with set valued maps. Journal of Mathematical Analysis and Applications, 325(1), 1–18.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Heyde, F. (2006). Coherent risk measures and vector optimization. In K.-H. Küfer et al. (Eds.), Multicriteria decision making and fuzzy systems. Theory, methods and applications (pp. 3–12). Aachen: Shaker.

    Google Scholar 

  • Ide, J., Köbis, E., Kuroiwa, D., Schöbel, A., & Tammer, C. (2014). The relationship between multiobjective robustness concepts and set-valued optimization. Fixed Point Theory and Applications,83, DOI: 10.1186/1687-1812-2014-83.

    Google Scholar 

  • Khan, A., Tammer, C., & Zălinescu, C. (2015). Set-valued optimization: An introduction with applications. Berlin: Springer.

    Book  Google Scholar 

  • Klamroth, K., Köbis, E., Schöbel, A., & Tammer, C. (2013). A unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionals. Optimization, 62(5), 649–671.

    Article  MathSciNet  MATH  Google Scholar 

  • Köbis, E., & Tammer, C. (2012). Relations between strictly robust optimization problems and a non-linear scalarization method. AIP Numerical Analysis and Applied Mathematics, 1479, 2371–2374.

    Google Scholar 

  • Kouvelis, P., & Sayin, S. (2006). Algorithm robust for the bicriteria discrete optimization problem. Annals of Operations Research, 147, 71–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Martins, E. Q. V. (1984). On a multicriteria shortest path problem. European Journal of Operational Research, 16(2), 236–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Quaranta, A. G., & Zaffaroni, A. (2008). Robust optimization of conditional value at risk and portfolio selection. Journal of Banking & Finance, 32, 2046–2056.

    Article  Google Scholar 

  • Sayin, S., & Kouvelis, P. (2005). The multiobjective discrete optimization problem: A weighted min-max two-stage optimization approach and a bicriteria algorithm. Management Science, 51, 1572–1581.

    Article  MATH  Google Scholar 

  • Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21, 1154–1157.

    Article  MathSciNet  MATH  Google Scholar 

  • Stiller, S. (2009). Extending concepts of reliability: Network creation games, real-time scheduling, and robust optimization. PhD thesis, TU Berlin.

    Google Scholar 

  • Tammer, C., & Tannert, J. (2012). Multicriteria approaches for a private equity fund. AIP Numerical Analysis and Applied Mathematics, 30, 2367–2370.

    ADS  Google Scholar 

  • Tannert, J. (2013). Mathematisches Modellieren und Optimieren von Private Equity. PhD thesis, University of Halle-Wittenberg.

    Google Scholar 

  • Weidner, P. (1990). Ein Trennungskonzept und seine Anwendung auf Vektoroptimierungsverfahren. Dissertation B, Martin-Luther-Universität Halle-Wittenberg.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous referees of this book chapter for their valuable comments and constructive suggestions. The work of A. A. K. is supported by a grant from the Simons Foundation (#210443 to Akhtar Khan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Tammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, A.A., Köbis, E., Tammer, C. (2015). Scalarization Methods in Multiobjective Optimization, Robustness, Risk Theory and Finance. In: Al-Shammari, M., Masri, H. (eds) Multiple Criteria Decision Making in Finance, Insurance and Investment. Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-319-21158-9_6

Download citation

Publish with us

Policies and ethics