Skip to main content

On a Quantum Algorithm for the Resolution of Systems of Linear Equations

  • Chapter
  • First Online:
Recent Advances in Computational Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 610))

  • 945 Accesses

Abstract

The numerical resolution of systems of linear equations is an important problem which recurs continously in applied sciences. In particular, it represents an indispensable tool in applied mathematics which can be utilized as a foundation to more complicated problems (e.g. optimization problems, partial differential equations, eigenproblems, etc.). In this work, we introduce a solver for systems of linear equations based on quantum mechanics. More specifically, given a system of linear equations we introduce an equivalent optimization problem which objective function defines an electrostatic potential. Then, we evolve a many-body quantum system immersed in this potential and show that the corresponding Wigner quasi-distribution function converges to the global energy minimum. The simulations are performed by using the time-dependent, ab-initio, many-body Wigner Monte Carlo method. Finally, by numerically emulating the (random) process of measurement, we demonstrate that one can extract the solution of the original mathematical problem. As a proof of concept we solve 3 simple, but different, linear systems with increasing complexity. The outcomes clearly show that our suggested approach is a valid quantum algorithm for the resolution of systems of linear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  2. B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  Google Scholar 

  3. L.C.L. Hollenberg, A.S. Dzurak, C. Wellard, A.R. Hamilton, D.J. Reilly, G.J. Milburn, R.G. Clark, Charged-based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301 (2004)

    Article  Google Scholar 

  4. K. Yokoi, D. Moraru, M. Ligowski, M. Tabe, Single-gated single-electron transfer in nonuniform arrays of quantum dots. Jpn. J. Appl. Phys. 48, 024503 (2009)

    Article  Google Scholar 

  5. E. Hamid, D. Moraru, J.C. Tarido, S. Miki, T. Mizuno, M. Tabe, Single-electron transfer between two donors in nanoscale thin silicon-on-insulator field-effect transistors. Appl. Phys. Lett. 97, 262101 (2010)

    Article  Google Scholar 

  6. D. Moraru, A. Udhiarto, M. Anwar, R. Nowak, R. Jablonski, E. Hamid, J.C. Tarido, T. Mizuno, M. Tabe, Atom devices based on single dopants in silicon nanostructures. Nanoscale Res. Lett. 6, 479 (2011)

    Article  Google Scholar 

  7. M. Simmons, S. Schofield, J. Obrien, N. Curson, L. Oberbeck, T. Hallam, R. Clark, Towards the atomic-scale fabrication of a silicon-based solid state quantum computer. Surf. Sci. 532–535, 1209–1218 (2003)

    Article  Google Scholar 

  8. E. Nielsen, R.W. Young, R.P. Muller, M.S. Carroll, Implications of simultaneous requirements for low-noise exchange gates in double quantum dots. Phys. Rev. B 82, 075319 (2010)

    Article  Google Scholar 

  9. M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)

    Article  Google Scholar 

  10. T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998)

    Article  Google Scholar 

  11. A.B. Finilla, M.A. Gomez, C. Sebenik, D.J. Doll, Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343 (1994)

    Article  Google Scholar 

  12. G.E. Santoro, E. Tosatti, Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A 39, R393 (2006)

    Article  MathSciNet  Google Scholar 

  13. A. Das, B.K. Chakrabarti, Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061 (2008)

    Article  MathSciNet  Google Scholar 

  14. S. Boixo, T.F. Rønnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218–224 (2014)

    Article  Google Scholar 

  15. T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, M. Troyer, Defining and detecting quantum speedup. Science 345, 420–426 (2014)

    Article  Google Scholar 

  16. J. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, J. Du, Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89, 022313 (2014)

    Article  Google Scholar 

  17. X.D. Cai, C. Weedbrook, Z.E. Su, M.C. Chen, M. Gu, M.J. Zhu, L. Li, N.L. Liu, C.Y. Lu, J.W. Pan, Experimental quantum computing to solve systems of linear equations. Phy. Rev. Lett. 110, 230501 (2013)

    Article  Google Scholar 

  18. E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  Google Scholar 

  19. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide (Society for Industrial and Applied Mathematics, Philadelphia, 1999)

    Book  Google Scholar 

  20. M. Galassi et al., GNU Scientific Library Reference Manual, 3rd edn. (Network Theory Limited, Bristol, 2009)

    Google Scholar 

  21. J.M. Sellier, M. Nedjalkov, I. Dimov, S. Selberherr, A benchmark study of the Wigner Monte-Carlo method. Monte Carlo Methods Appl. De Gruyter (2014). doi:10.1515/mcma-2013-0018

  22. J.M. Sellier, I. Dimov, The many-body Wigner Monte Carlo method for time-dependent Ab-initio quantum simulations. J. Comput. Phys. 273, 589–597 (2014)

    Article  MathSciNet  Google Scholar 

  23. J.M. Sellier, M. Nedjalkov, I. Dimov, S. Selberherr, Decoherence and time reversibility: the role of randomness at interfaces. J. Appl. Phys. 114, 174902 (2013)

    Article  Google Scholar 

  24. I. Dimov, Monte Carlo Algorithms for Linear Problems, Pliska (Studia Mathematica Bulgarica), Vol. 13 (2000), 1997, pp. 57–77

    Google Scholar 

  25. I. Dimov, T. Gurov, Monte Carlo Algorithm for Solving Integral Equations with Polynomial Non-linearity. Parallel Implementation, Pliska (Studia Mathematica Bulgarica), Vol. 13 (2000), 1997, pp. 117–132

    Google Scholar 

  26. J.M. Sellier, GNU Archimedes. Available www.gnu.org/software/archimedes. Accessed 08 Dec 2014

  27. J.M. Sellier, Nano-archimedes. www.nano-archimedes.com. Accessed 08 Dec 2014

  28. J.M. Sellier, I. Dimov, Wigner-Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant. Comput. Phys. Commun. 185, 2427–2435 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the the project EC AComIn (FP7-REGPOT-2012-2013-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Sellier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sellier, J.M., Dimov, I. (2016). On a Quantum Algorithm for the Resolution of Systems of Linear Equations. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-319-21133-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21133-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21132-9

  • Online ISBN: 978-3-319-21133-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics