Skip to main content

Finding Optimal Discretization Orders for Molecular Distance Geometry by Answer Set Programming

  • Chapter
  • First Online:
  • 903 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 610))

Abstract

The Molecular Distance Geometry Problem (MDGP) is the problem of finding the possible conformations of a molecule by exploiting available information about distances between some atom pairs. When particular assumptions are satisfied, the MDGP can be discretized, so that the search domain of the problem becomes a tree. This tree can be explored by using an interval Branch & Prune (iBP) algorithm. In this context, the order given to the atoms of the molecules plays an important role. In fact, the discretization assumptions are strongly dependent on the atomic ordering, which can also impact the computational cost of the iBP algorithm. In this work, we propose a new partial discretization order for protein backbones. This new atomic order optimizes a set of objectives, that aim at improving the iBP performances. The optimization of the objectives is performed by Answer Set Programming (ASP), a declarative programming language that allows to express our problem by a set of logical constraints. The comparison with previously proposed orders for protein backbones shows that this new discretization order makes iBP perform more efficiently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)

    Article  Google Scholar 

  2. G. Brewka, T. Eiter, M. Truszczyński, Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  3. A. Cassioli, B. Bardiaux, G. Bouvier, A. Mucherino, R. Alves, L. Liberti, M. Nilges, C. Lavor, T.E. Malliavin, An algorithm to enumerate all possible protein conformations verifying a set of distance restraints. BMC Bioinform. (2015, to appear)

    Google Scholar 

  4. A. Cassioli, O. Gunluk, C. Lavor, L. Liberti, Discretization vertex orders in distance geometry. Discrete Appl. Math. (2015, to appear)

    Google Scholar 

  5. V. Costa, A. Mucherino, C. Lavor, A. Cassioli, L.M. Carvalho, N. Maculan, Discretization orders for protein side chains. J. Glob. Optim. 60(2), 333–349 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. G.M. Crippen, T.F. Havel, Distance Geometry and Molecular Conformation (Wiley, New York, 1988)

    MATH  Google Scholar 

  7. T. Eiter, G. Ianni, T. Krennwallner, Answer set programming: a primer. Reason. Web 5689, 40–110 (2009)

    Google Scholar 

  8. M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)

    Article  MathSciNet  Google Scholar 

  9. M. Gelfond, Answer Sets, Handbook of Knowledge Representation, Chapter 7 (Elsevier, Amsterdam, 2007)

    Google Scholar 

  10. D.S. Gonçalves, A. Mucherino, Discretization orders and efficient computation of Cartesian coordinates for distance geometry. Optim. Lett. 8(7), 2111–2125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Gramacho, D. Gonçalves, A. Mucherino, N. Maculan, A new algorithm to finding discretizable orderings for distance geometry, in Proceedings of Distance Geometry and Applications (DGA13), Manaus, Amazonas, Brazil, pp. 149–152 (2013)

    Google Scholar 

  12. T.F. Havel, in Distance Geometry, Encyclopedia of nuclear magnetic resonance, ed. by D.M. Grant, R.K. Harris (Wiley, New York, 1995), pp. 1701–1710

    Google Scholar 

  13. C. Lavor, J. Lee, A. Lee-St.John, L. Liberti, A. Mucherino, M. Sviridenko, Discretization orders for distance geometry problems. Optim. Lett. 6(4), 783–796 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Lavor, L. Liberti, N. Maculan, A. Mucherino, The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Lavor, L. Liberti, A. Mucherino, The interval branch-and-prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Glob. Optim. 56(3), 855–871 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Lavor, A. Mucherino, L. Liberti, N. Maculan, On the computation of protein backbones by using artificial backbones of hydrogens. J. Glob. Optim. 50(2), 329–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Liberti, C. Lavor, N. Maculan, A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. T.E. Malliavin, A. Mucherino, M. Nilges, Distance geometry in structural biology: new perspectives, in Distance Geometry: Theory, Methods and Applications, ed. by A. Mucherino, C. Lavor, L. Liberti, N. Maculan (Springer, Berlin, 2013), pp. 329–350

    Chapter  Google Scholar 

  20. A. Mucherino, On the Identification of Discretization Orders for Distance Geometry with Intervals, Lecture Notes in Computer Science 8085, in Proceedings of Geometric Science of Information (GSI13), ed. by F. Nielsen, F. Barbaresco, Paris, France, 2013, pp. 231–238

    Google Scholar 

  21. A. Mucherino, A Pseudo de Bruijn Graph Representation for Discretization Orders for Distance Geometry, Lecture Notes in Computer Science 9043, Lecture Notes in Bioinformatics series, ed. by F. Ortuño, I. Rojas, Proceedings of the 3rd International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO15), Part I, Granada, Spain, 2015 pp. 514–523

    Google Scholar 

  22. A. Mucherino, C. Lavor, L. Liberti, The discretizable distance geometry problem. Optim. Lett. 6(8), 1671–1686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. G.N. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Stereochemistry of polypeptide chain conformations. J. Mol. Biol. 7, 95–99 (1963)

    Article  Google Scholar 

  24. J.B. Saxe, Embeddability of weighted graphs in \(k\)-space is strongly NP-hard, Proceedings of 17th Allerton Conference in Communications, Control and Computing, 480–489 (1979)

    Google Scholar 

Download references

Acknowledgments

We are thankful to the Brittany Region (France) and to the Brazilian research agencies FAPESP, CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonçalves, D., Nicolas, J., Mucherino, A., Lavor, C. (2016). Finding Optimal Discretization Orders for Molecular Distance Geometry by Answer Set Programming. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-319-21133-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21133-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21132-9

  • Online ISBN: 978-3-319-21133-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics