Skip to main content

Body Force Modelling of Internal Geometry for Jet Noise Prediction

  • Conference paper
  • First Online:
Advances in Simulation of Wing and Nacelle Stall (FOR 1066 2014)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 131))

Included in the following conference series:

Abstract

The noise produced by aeroengines is a critical topic in engine design. Large-Eddy Simulation (LES) and hybrid Reynolds-Averaged Navier-Stokes (RANS)-LES provides a method to increase understanding of influences on the noise produced and could lead to improved models for use in design. Use of Immersed Boundary (IB) and Body Force Methods (BFM) allows arbitrary geometry to be added rapidly and so this is explored to model internal geometry effects on jet noise. This reduces grid complexity and broadens the accessible design space by reducing setup time and computational cost. Using LES and BFM/IB, many effects that are difficult to test experimentally can be assessed numerically within useful time-frames. To enable challenging targets for jet noise to be met, the importance of the many influences on jet noise must be understood. These include the use of, single or dual stream jet nozzles, the presence (or lack of) of a pylon, wing, flap and deflection angles, nozzle serrations, eccentricity, temperature and velocity ratio, flight stream and upstream/internal geometry effects. The latter effects are the main focus of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, Z., Tucker, P.G.: Multiblock structured mesh generation for turbomachinery flows. In: Proceedings of the 22nd International Meshing Roundtable, 20, pp. 165–182. Springer International Publishing (2013)

    Google Scholar 

  2. Andersson, N., Eriksson, L.E., Davidson, L.: LES prediction of flow and acoustic field of a coaxial jet. In: 11th AIAA/CEAS Aeroacoustics Conference (2005). http://arc.aiaa.org/doi/abs/10.2514/6.2005-2884. doi:10.2514/6.2005-2884

  3. Bodony, D.J., Lele, S.K.: Current Status of Jet Noise Predictions Using Large-Eddy Simulation. AIAA Journal 46(2), 364–380 (2008). http://arc.aiaa.org/doi/abs/10.2514/1.24475. doi:10.2514/1.24475

    Google Scholar 

  4. Bridges, J., Wernet, M.P.: Establishing consensus turbulence statistics for hot subsonic jets. In: 16th AIAA/CEAS Aeroacoustics Conference, pp. 1–41, Paper AIAA 2010–3751. AIAA (June 2010)

    Google Scholar 

  5. Dawes, W.N., Harvey, S.A., Fellows, S., Eccles, N., Jaeggi, D., Kellar, W.P.: A practical demonstration of scalable, parallel mesh generation. In: 47th AIAA Aerospace Sciences Meeting & Exhibit, Paper AIAA-2009-0981. American Institute of Aeronautics and Astronautics, Orlando, Florida (January 2009)

    Google Scholar 

  6. Eastwood, S.: Hybrid LES-RANS of complex geometry jets. Ph.D. thesis, University of Cambridge (2010)

    Google Scholar 

  7. Eastwood, S., Tucker, P., Xia, H., Dunkley, P., Carpenter, P.: Large-Eddy Simulations and Measurements of a Small-Scale High-Speed Coflowing Jet. AIAA Journal 48(5), 963–974 (2010). http://arc.aiaa.org/doi/abs/10.2514/1.44534. doi:10.2514/1.44534

    Google Scholar 

  8. Eastwood, S., Tucker, P., Xia, H., Klostermeier, C.: Developing Large Eddy Simulation for Turbomachinery Applications. Phil. Trans. R. Soc. A 367(1899), 2999–3013 (2009)

    Article  Google Scholar 

  9. Georgiadis, N.J., DeBonis, J.R.: Navier-Stokes analysis methods for turbulent jet flows with application to aircraft exhaust nozzles. Progress in Aerospace Sciences 42(1), 377–418 (2006). doi:10.1016/j.paerosci.2006.12.001

    Google Scholar 

  10. Gong, Y.: A Computational Model for Rotating Stall and Inlet Distortions in Multistage Compressors. Phd thesis, Massachusetts Institute of Technology (1998)

    Google Scholar 

  11. Jameson, A.: Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes. Journal of Scientific Computing 34(2), 188–208 (2007). doi:10.1007/s10915-007-9172-6

    Google Scholar 

  12. Peskin, C.S.: Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10, 252–271 (1972). doi:10.1016/0021-9991(72)90065–4

  13. Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2002). http://www.journals.cambridge.org/abstract_S0962492902000077. doi:10.1017/S0962492902000077

  14. Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics 6(1), 35 (2004)

    Article  Google Scholar 

  15. Probst, A., Johannes, L., Reuß, S., Knopp, T., Kessler, R.: Scale-Resolving Simulations with a Low-Dissipation Low-Dispersion Second-Order Scheme for Unstructured Finite-Volume Flow Solvers. 53rd AIAA Aerospace Sciences Meeting. pp. 1–18. AIAA, Kissimmee, Florida (January 2015)

    Google Scholar 

  16. Roe, P.: Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. Journal of Computational Physics 43, 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  17. Saxena, S.: The prediction of noise and installation effects of high-subsonic dual-stream jets in flight. Phd thesis, The Pennsylvania State University (2012)

    Google Scholar 

  18. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1(1), 5–21 (1994). http://www.mendeley.com/research/a-oneequation-turbulence-model-for-aerodynamic-flows/

  19. Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: First AFOSR International Conference on DNS/LES in Advances in DNS/LES, pp. 137–147 (1997)

    Google Scholar 

  20. Tucker, P.G.: Unsteady Computational Fluid Dynamics in Aeronautics. Springer (2013)

    Google Scholar 

  21. Uzun, A., Hussaini, M.Y.: Some Issues in Large-Eddy Simulations for Chevron Nozzle Jet Flows. Journal of Propulsion and Power 28(2), 246–258 (2012). http://arc.aiaa.org/doi/abs/10.2514/1.B34274. doi:10.2514/1.B34274

    Google Scholar 

  22. Wang, Z.N., Tucker, P., Strange, P.: Far field noise prediction of subsonic hot and cold jets using large-eddy simulation. In: Proceedings of ASME Turbo Expo 2014, GT201425,928. ASME, Dusseldorf, Germany (2014)

    Google Scholar 

  23. Xia, H., Tucker, P.G., Eastwood, S., Mahak, M.: The influence of geometry on jet plume development. Progress in Aerospace Sciences 52, 56–66 (2012). http://www.sciencedirect.com/science/article/pii/S0376042112000127. doi:10.1016/j.paerosci.2011.12.003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Tyacke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tyacke, J.C., Naqavi, I.Z., Tucker, P.G. (2016). Body Force Modelling of Internal Geometry for Jet Noise Prediction. In: Radespiel, R., Niehuis, R., Kroll, N., Behrends, K. (eds) Advances in Simulation of Wing and Nacelle Stall. FOR 1066 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-21127-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21127-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21126-8

  • Online ISBN: 978-3-319-21127-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics