Body Force Modelling of Internal Geometry for Jet Noise Prediction

  • James C. TyackeEmail author
  • Iftekhar Z. Naqavi
  • Paul G. Tucker
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 131)


The noise produced by aeroengines is a critical topic in engine design. Large-Eddy Simulation (LES) and hybrid Reynolds-Averaged Navier-Stokes (RANS)-LES provides a method to increase understanding of influences on the noise produced and could lead to improved models for use in design. Use of Immersed Boundary (IB) and Body Force Methods (BFM) allows arbitrary geometry to be added rapidly and so this is explored to model internal geometry effects on jet noise. This reduces grid complexity and broadens the accessible design space by reducing setup time and computational cost. Using LES and BFM/IB, many effects that are difficult to test experimentally can be assessed numerically within useful time-frames. To enable challenging targets for jet noise to be met, the importance of the many influences on jet noise must be understood. These include the use of, single or dual stream jet nozzles, the presence (or lack of) of a pylon, wing, flap and deflection angles, nozzle serrations, eccentricity, temperature and velocity ratio, flight stream and upstream/internal geometry effects. The latter effects are the main focus of this study.


Medial Axis Internal Geometry Bypass Duct Body Force Method Upstream Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ali, Z., Tucker, P.G.: Multiblock structured mesh generation for turbomachinery flows. In: Proceedings of the 22nd International Meshing Roundtable, 20, pp. 165–182. Springer International Publishing (2013)Google Scholar
  2. 2.
    Andersson, N., Eriksson, L.E., Davidson, L.: LES prediction of flow and acoustic field of a coaxial jet. In: 11th AIAA/CEAS Aeroacoustics Conference (2005). doi: 10.2514/6.2005-2884
  3. 3.
    Bodony, D.J., Lele, S.K.: Current Status of Jet Noise Predictions Using Large-Eddy Simulation. AIAA Journal 46(2), 364–380 (2008). doi: 10.2514/1.24475 Google Scholar
  4. 4.
    Bridges, J., Wernet, M.P.: Establishing consensus turbulence statistics for hot subsonic jets. In: 16th AIAA/CEAS Aeroacoustics Conference, pp. 1–41, Paper AIAA 2010–3751. AIAA (June 2010)Google Scholar
  5. 5.
    Dawes, W.N., Harvey, S.A., Fellows, S., Eccles, N., Jaeggi, D., Kellar, W.P.: A practical demonstration of scalable, parallel mesh generation. In: 47th AIAA Aerospace Sciences Meeting & Exhibit, Paper AIAA-2009-0981. American Institute of Aeronautics and Astronautics, Orlando, Florida (January 2009)Google Scholar
  6. 6.
    Eastwood, S.: Hybrid LES-RANS of complex geometry jets. Ph.D. thesis, University of Cambridge (2010)Google Scholar
  7. 7.
    Eastwood, S., Tucker, P., Xia, H., Dunkley, P., Carpenter, P.: Large-Eddy Simulations and Measurements of a Small-Scale High-Speed Coflowing Jet. AIAA Journal 48(5), 963–974 (2010). doi: 10.2514/1.44534 Google Scholar
  8. 8.
    Eastwood, S., Tucker, P., Xia, H., Klostermeier, C.: Developing Large Eddy Simulation for Turbomachinery Applications. Phil. Trans. R. Soc. A 367(1899), 2999–3013 (2009)CrossRefGoogle Scholar
  9. 9.
    Georgiadis, N.J., DeBonis, J.R.: Navier-Stokes analysis methods for turbulent jet flows with application to aircraft exhaust nozzles. Progress in Aerospace Sciences 42(1), 377–418 (2006). doi: 10.1016/j.paerosci.2006.12.001 Google Scholar
  10. 10.
    Gong, Y.: A Computational Model for Rotating Stall and Inlet Distortions in Multistage Compressors. Phd thesis, Massachusetts Institute of Technology (1998)Google Scholar
  11. 11.
    Jameson, A.: Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes. Journal of Scientific Computing 34(2), 188–208 (2007). doi: 10.1007/s10915-007-9172-6 Google Scholar
  12. 12.
    Peskin, C.S.: Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10, 252–271 (1972). doi: 10.1016/0021-9991(72)90065–4
  13. 13.
    Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2002). doi: 10.1017/S0962492902000077
  14. 14.
    Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics 6(1), 35 (2004)CrossRefGoogle Scholar
  15. 15.
    Probst, A., Johannes, L., Reuß, S., Knopp, T., Kessler, R.: Scale-Resolving Simulations with a Low-Dissipation Low-Dispersion Second-Order Scheme for Unstructured Finite-Volume Flow Solvers. 53rd AIAA Aerospace Sciences Meeting. pp. 1–18. AIAA, Kissimmee, Florida (January 2015)Google Scholar
  16. 16.
    Roe, P.: Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. Journal of Computational Physics 43, 357–372 (1981)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Saxena, S.: The prediction of noise and installation effects of high-subsonic dual-stream jets in flight. Phd thesis, The Pennsylvania State University (2012)Google Scholar
  18. 18.
    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1(1), 5–21 (1994).
  19. 19.
    Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: First AFOSR International Conference on DNS/LES in Advances in DNS/LES, pp. 137–147 (1997)Google Scholar
  20. 20.
    Tucker, P.G.: Unsteady Computational Fluid Dynamics in Aeronautics. Springer (2013)Google Scholar
  21. 21.
    Uzun, A., Hussaini, M.Y.: Some Issues in Large-Eddy Simulations for Chevron Nozzle Jet Flows. Journal of Propulsion and Power 28(2), 246–258 (2012). doi: 10.2514/1.B34274 Google Scholar
  22. 22.
    Wang, Z.N., Tucker, P., Strange, P.: Far field noise prediction of subsonic hot and cold jets using large-eddy simulation. In: Proceedings of ASME Turbo Expo 2014, GT201425,928. ASME, Dusseldorf, Germany (2014)Google Scholar
  23. 23.
    Xia, H., Tucker, P.G., Eastwood, S., Mahak, M.: The influence of geometry on jet plume development. Progress in Aerospace Sciences 52, 56–66 (2012). doi: 10.1016/j.paerosci.2011.12.003 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • James C. Tyacke
    • 1
    Email author
  • Iftekhar Z. Naqavi
    • 1
  • Paul G. Tucker
    • 1
  1. 1.University of CambridgeCambridgeEngland

Personalised recommendations