Advertisement

Hybrid RANS/LES Study of the Development of an Airfoil-Generated Vortex

  • Silvia ReußEmail author
  • Axel Probst
  • Tobias Knopp
  • Katharina P. Wawrzinek
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 131)

Abstract

We consider the numerical simulation of a generic lateral vortex, that is generated by a rapidly deflected NACA0021 airfoil. We use the SST k-\(\omega \) URANS approach and a hybrid RANS-LES method based on the SST model, where a zonal RANS-LES interface is located little downstream of the airfoil trailing edge. The results are assessed by reference with the experimental data. The mean flow behavior and the induced angle of attack of the vortex can be predicted satisfactorily by the URANS approach and the improvement using hybrid RANS/LES is small. The hybrid RANS/LES results exhibit a delayed shear layer instability of the wake, and the arising 2D roller type vortices lead to a significant overprediction of the turbulent shear stress. We then apply a stochastic forcing in the region of the airfoil trailing edge. This leads to a fast generation of turbulent content in the wake and clearly improves the predictions for the turbulent stresses.

Keywords

Particle Image Velocimetry Spanwise Direction Detach Eddy Simulation Turbulent Shear Stress Delayed Detach Eddy Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chauvet, N., Deck, S., Jacquin, L.: Zonal Detached Eddy Simulation of a Controlled Propulsive Jet. AIAA Journal 45(10), 2458–2473 (2007)CrossRefGoogle Scholar
  2. 2.
    François, D.G., Radespiel, R.: Airfoil Stall Simulations with Algebraic Delayed DES and Physically Based Synthetic Turbulence for RANS-LES Transition. AIAA 2014–2574 (2014)Google Scholar
  3. 3.
    François, D.G., Radespiel, R., Reuß, S.: Computations of separated flows with hybrid RANS/LES approaches. In: 4th Symposium “Simulation of Wing and Nacelle Stall”, December 1-2, Braunschweig, Germany (2014)Google Scholar
  4. 4.
    Klein, S., Hahn, D., Scholz, P., Radespiel, R.: Vortex interactions with a high-lift airfoil in a low speed wind tunnel. AIAA 2013–2875 (2013)Google Scholar
  5. 5.
    Knopp, T., Probst, A.: An algebraic sensor for the RANS-LES switch in delayed detached-eddy simulation. In: Dillmann, A., Heller, G., Kreplin, H.-P., Nitsche, W., Peltzer, I. (eds.) New Results in Numerical and Experimental Fluid Mechanics VIII. NNFM, vol. 121, pp. 457–464. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Probst, A., Reuß, S.: Scale-Resolving simulations of wall-bounded flows with an unstructured compressible flow solver. In: 5th Symposium on Hybrid RANS-LES Methods, TEXAS A&M University, College Station, Texas, USA (2014)Google Scholar
  7. 7.
    Probst, A., Radespiel, R., Wolf, C., Knopp, T., Schwamborn, D.: A Comparison of Detached-Eddy Simulation and Reynolds-Stress Modelling Applied to the Flow over a Backward-Facing Step and an Airfoil at Stall. AIAA 2010–920 (2010)Google Scholar
  8. 8.
    Probst, A., Radespiel, R., Knopp, T.: Detached-Eddy simulation of aerodynamic flows using a reynolds-stress background model and algebraic RANS/LES sensors. AIAA 2011–3206 (2011)Google Scholar
  9. 9.
    Radespiel, R., et al.: Simulation of Wing Stall. AIAA 2013–3175 (2013)Google Scholar
  10. 10.
    Reuß, S., Knopp, T., Schwamborn, D.: Hybrid RANS/LES simulations of a three-element airfoil. In: Fu, S., Haase, W., Peng, S.-H., Schwamborn, D. (eds.) Progress in Hybrid RANS-LES Modelling. NNFM, vol. 117, pp. 357–367. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Reuß, S., Probst, A., Knopp, T.: Numerical investigation of the DLR F15 two-element airfoil using a Reynolds stress model. In: 3rd Symposium “Simulation of Wing and Nacelle Stall”, June 21–22, Braunschweig, Germany (2012)Google Scholar
  12. 12.
    Reuß, S., Wolf, C., Knopp, T., Raichle, A., Schwamborn, D.: Chimera technique for transporting disturbances. International Journal for Numerical Methods in Fluids 70, 1558–1572 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Reuß, S., Knopp, T., Probst, A., Orlt, M.: Assessment of local LES-Resolution sensors for hybrid RANS/LES simulations. In: 5th Symposium on Hybrid RANS-LES Methods, TEXAS A&M University, College Station, Texas, USA, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (2014)Google Scholar
  14. 14.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.K.: A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics 20(3), 181–195 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Travin, A.K., Shur, M.L., Spalart, P.R., Strelets, M.K.: Improvement of delayed detached-eddy simulation for LES with wall modelling. In: European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, TU Delft, The Netherlands (2006)Google Scholar
  16. 16.
    Wawrzinek, K., Lutz, T., Krämer, E.: Numerical studies of turbulent flow influence on a two-element airfoil. In: 4th Symposium “Simulation of Wing and Nacelle Stall”, December 1-2, Braunschweig, Germany (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Silvia Reuß
    • 1
    Email author
  • Axel Probst
    • 1
  • Tobias Knopp
    • 1
  • Katharina P. Wawrzinek
    • 2
  1. 1.Institute of Aerodynamics and Flow TechnologyGöttingenGermany
  2. 2.Institute of Aerodynamics and Gas DynamicsUniversität StuttgartStuttgartGermany

Personalised recommendations