Skip to main content

Numerical Studies of Active Flow Control Applied at the Engine-Wing Junction

  • Conference paper
  • First Online:
Book cover Advances in Simulation of Wing and Nacelle Stall (FOR 1066 2014)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 131))

Included in the following conference series:

Abstract

This paper presents a numerical study of active flow control applied at the engine-wing junction to increase the high-lift performance of a generic full scale wind tunnel model representing a landing configuration of conventional airliners with engines mounted under backward swept wings. The use of UHBR (Ultra High Bypass Ratio) engines is currently one of the most promising approaches to further increase the efficiency of transport aircraft. However their large engine diameter prevents the mounting of leading edge devices at the engine-wing junction. This leads to a local flow separation on the wing suction side in the wake of the nacelle which may trigger the total wing stall and hence compromises the high-lift performance and therefore the total aircraft efficiency. At DLR (German Aerospace Center) numerical simulations of AFC (active flow control) at the engine-wing junction were conducted to study the capability of suppressing this local flow separation. The effects of steady and pulsed jet blowing with the same actuator geometry are compared. The results show that the steady blowing reduces the size of the nacelle-wake separation. However the pulsed blowing of the analyzed setup shows a low effect on the size of the nacelle-wake separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. EU-project AfloNext. www.AfloNext.eu

  2. European Commission, Flightpath 2050 - Europe’s Vision for Aviation (2011)

    Google Scholar 

  3. European Commission, European Aeronautics: A Vision for 2020 (2001)

    Google Scholar 

  4. Technical Documentation of the DLR TAU-Code Release 2013.1.0 (2013)

    Google Scholar 

  5. Bauer, M., Peltzer, I., Nitsche, W., Gölling, B.: Active Flow Control on an Industry-Relevant Civil Aircraft Half Model. In: King, R. (ed.) Active Flow Control II 2010. NNFM, vol. 108, pp. 95–107. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Bauer, M., Grund, T., Nitsche, W.: Experiments on active drag reduction on a complex outer wing model. AIAA Journal (published 2015)

    Google Scholar 

  7. Benek, J., Steger, J.L., Doughterty, F.C.: A Flexible Grid Embedding Technique with Application to the Euler Equations. AIAA Paper 83–1944 (1983)

    Google Scholar 

  8. Brunet, V., Dandois, J., Verbeke, C.: Recent Onera Flow Control Reseach on High-Lift Configurations, Journal Aerospace Lab (6), June 2013. ISSN 2107–6596

    Google Scholar 

  9. Cattafesta III, L. N., Sheplak, M.: Actuators for Active Flow Control. Annual Review of Fluid Mechanics (2011)

    Google Scholar 

  10. Ciobaca, V., Wild, J.: An Overview of Recent DLR Contributions on Active Flow-Separation Control Studies for High-Lift Configurations, Journal Aerospace Lab (6), June 2013. ISSN 2107–6596

    Google Scholar 

  11. Ciobaca, V.: Validation of Numerical Simulations for Separation Control on High-Lift Configurations, DLR IB-2014-11, Phd-thesis. Technical University Berlin (2014)

    Google Scholar 

  12. Ciobaca, V., Wild, J.: Active Flow Control for an Outer Wing Model of a Take-off Transport Aircraft Configuration - A numerical Study. AIAA Paper 2014–2403 (2014)

    Google Scholar 

  13. Emunds, R., Leading Edge Vortex System of the A380 at high Angles of Attack in Landing Configuration, Third Symposium Simulation of Wing and Nacelle Stall, June 21-22, Technical University Braunschweig (2012)

    Google Scholar 

  14. v. Geyr, H., Schade, N., Burg van der, J. W., Eliasson, P., Esquieu, S.: CFD Prediction of Maximum Lift Effects on Realistic High-Lift-Commercial-Aircraft-Configurations within the European Project EUROLIFT II, AIAA Paper 2007–4299 (2007)

    Google Scholar 

  15. Goelling, B., Bauer, M.: Fluid Actuator for Producing a Pulsed Outlet Flow in the Flow Around an Aerodynamic Body, and Discharge Device and Aerodynamic Body Equipped Therewith, US 2012/0186682 A1

    Google Scholar 

  16. Greenblatt, D., Wygnaski, I.: The Control of Flow Separation by Periodic Exitation. Progress in Aerospace Sciences 36, 487–545 (2000)

    Article  Google Scholar 

  17. Guynn M. D., et al., Refined Exploration of Turbofan Design Options for an Advanced Single-Aisle Transport. NASA/TM 2011-216883 (2011)

    Google Scholar 

  18. Haines, A.B.: Scale Effects on Aircraft and Weapon Aerodynamics, AGARD AG323 (1994)

    Google Scholar 

  19. Hauke, F., Nitsche, W.: Active Separation Control on a 2D High-Lift Wing Section towards High Reynolds Number Application. AIAA Paper 2013–2514 (2013)

    Google Scholar 

  20. Hecklau, M.: Experimente zur aktiven Stroemungsbeeinussung in einer Verdichterkaskade mit pulsierenden Wandstrahlen, Phd-thesis. Technical University Berlin (2012)

    Google Scholar 

  21. Hoell, T., Wassen, T., Thiele, F.: Numerical Incestigation of Spatially Distributed Actuation on a Three-Element High-Lift Configuration, Notes on numerical Fluid Mechanics and Multidisciplinary Design, vol. 108. Springer (2010)

    Google Scholar 

  22. Jeong, J., Hussain, F., On the Identification of a Vortex. Journal of Fluid Mechanics 285, 69–94 (1995)

    Google Scholar 

  23. Leatham, M., Stokes, S., Shaw, J., Cooper, J., Appa, J., Blaylock, T.: Automatic Mesh generation for Rapid Response Navier-Stokes Calculations. AIAA Paper 2000–2247 (2000)

    Google Scholar 

  24. Lengers, M.: Industrial Assessment of Overall Aircraft Driven Local Active Flow Control. In: 29th Congress of the International Council of the Aeronautical Sciences, September 7–12 (2014)

    Google Scholar 

  25. Mankins, J.C.: Technology Readiness Levels - A White Paper (1995)

    Google Scholar 

  26. Meyer, M., et al.: Designing and Testing Active Flow Control Systems at the Junction of Ultra-high Bypass Ratio Engines and the Wing, Eccomas Presentation (2014)

    Google Scholar 

  27. Meyer, M., Machunze, W., Bauer, M.: Towards the Industrial Application of Actve Flow Control in Civil Aircraft - An active Highlift Flap. AIAA Paper 2014–2401 (2014)

    Google Scholar 

  28. Neitzke, K.-P., Rudnik, R., Schroeder, S.: Low Speed Validation Tests on Engine/Airframe Integration Within the EC Project EUROLIFT II. AIAA Paper 2005–3704 (2005)

    Google Scholar 

  29. Nield, B.N.: An Overview of the Boeing 777 High Lift Aerodynamic Design (1995)

    Google Scholar 

  30. Petz, R., Nitsche, W.: Active Separation Control on the Flap of a two-dimensional Generic High-Lift Configuration. Journal of Aircraft 44 (2007)

    Google Scholar 

  31. Prandtl, L.: Ueber Fluessigkeitsbewegung bei sehr kleiner Reibung - Verhandlungen III. Internationaler mathematischer Kongress, Heidelberg (1904)

    Google Scholar 

  32. Poisson-Quinton, P., Recherches théoretiques et éxperimentales sur le contrôle de couche limite. In: 7th Congress of Applied Mechanics, Aerospace Science and Technology (1948)

    Google Scholar 

  33. Rudnik, R., v. Geyr, H.: The European High Lift Project EUROLIFT II Objectives, Approachand Structure. AIAA Paper 2007-4296 (2007)

    Google Scholar 

  34. Rudnik, R.: Stall Behavior of the Eurolift High Lift Configurations. AIAA Paper 2008–836 (2008)

    Google Scholar 

  35. Rudnik, R.: HINVA - High lift INflight VAlidation - Project Overview and Status. AIAA Paper 2012–0106 (2012)

    Google Scholar 

  36. Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA Paper 92–0439 (1992)

    Google Scholar 

  37. Schlichting, H., Grenzschicht-Theorie (2006)

    Google Scholar 

  38. van Dam, C.P.: The aerodynamic Design of Multi-Element High-Lift Systems for Transport Airplanes. Progress in Aerospace Sciences 38, 101–144 (2002)

    Google Scholar 

  39. Viets, H.: Flip-Flop Jet Nozzle. AIAA Journal 13(10), 1375–1379 (1975)

    Article  Google Scholar 

  40. Wild, J.: Mach and Reynolds Numer Dependencies of the Stall Beahaviour of High-Lift Wing Sections. Journal of Aircraft 50 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Fricke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fricke, S., Ciobaca, V., Wild, J., Norman, D. (2016). Numerical Studies of Active Flow Control Applied at the Engine-Wing Junction. In: Radespiel, R., Niehuis, R., Kroll, N., Behrends, K. (eds) Advances in Simulation of Wing and Nacelle Stall. FOR 1066 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-21127-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21127-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21126-8

  • Online ISBN: 978-3-319-21127-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics