Numerical Studies of Active Flow Control Applied at the Engine-Wing Junction

  • Sebastian FrickeEmail author
  • Vlad Ciobaca
  • Jochen Wild
  • David Norman
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 131)


This paper presents a numerical study of active flow control applied at the engine-wing junction to increase the high-lift performance of a generic full scale wind tunnel model representing a landing configuration of conventional airliners with engines mounted under backward swept wings. The use of UHBR (Ultra High Bypass Ratio) engines is currently one of the most promising approaches to further increase the efficiency of transport aircraft. However their large engine diameter prevents the mounting of leading edge devices at the engine-wing junction. This leads to a local flow separation on the wing suction side in the wake of the nacelle which may trigger the total wing stall and hence compromises the high-lift performance and therefore the total aircraft efficiency. At DLR (German Aerospace Center) numerical simulations of AFC (active flow control) at the engine-wing junction were conducted to study the capability of suppressing this local flow separation. The effects of steady and pulsed jet blowing with the same actuator geometry are compared. The results show that the steady blowing reduces the size of the nacelle-wake separation. However the pulsed blowing of the analyzed setup shows a low effect on the size of the nacelle-wake separation.


AIAA Paper Active Flow Control Wind Tunnel Model Transport Aircraft Technology Readiness Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    EU-project AfloNext.
  2. 2.
    European Commission, Flightpath 2050 - Europe’s Vision for Aviation (2011)Google Scholar
  3. 3.
    European Commission, European Aeronautics: A Vision for 2020 (2001)Google Scholar
  4. 4.
    Technical Documentation of the DLR TAU-Code Release 2013.1.0 (2013)Google Scholar
  5. 5.
    Bauer, M., Peltzer, I., Nitsche, W., Gölling, B.: Active Flow Control on an Industry-Relevant Civil Aircraft Half Model. In: King, R. (ed.) Active Flow Control II 2010. NNFM, vol. 108, pp. 95–107. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Bauer, M., Grund, T., Nitsche, W.: Experiments on active drag reduction on a complex outer wing model. AIAA Journal (published 2015)Google Scholar
  7. 7.
    Benek, J., Steger, J.L., Doughterty, F.C.: A Flexible Grid Embedding Technique with Application to the Euler Equations. AIAA Paper 83–1944 (1983)Google Scholar
  8. 8.
    Brunet, V., Dandois, J., Verbeke, C.: Recent Onera Flow Control Reseach on High-Lift Configurations, Journal Aerospace Lab (6), June 2013. ISSN 2107–6596Google Scholar
  9. 9.
    Cattafesta III, L. N., Sheplak, M.: Actuators for Active Flow Control. Annual Review of Fluid Mechanics (2011)Google Scholar
  10. 10.
    Ciobaca, V., Wild, J.: An Overview of Recent DLR Contributions on Active Flow-Separation Control Studies for High-Lift Configurations, Journal Aerospace Lab (6), June 2013. ISSN 2107–6596Google Scholar
  11. 11.
    Ciobaca, V.: Validation of Numerical Simulations for Separation Control on High-Lift Configurations, DLR IB-2014-11, Phd-thesis. Technical University Berlin (2014)Google Scholar
  12. 12.
    Ciobaca, V., Wild, J.: Active Flow Control for an Outer Wing Model of a Take-off Transport Aircraft Configuration - A numerical Study. AIAA Paper 2014–2403 (2014)Google Scholar
  13. 13.
    Emunds, R., Leading Edge Vortex System of the A380 at high Angles of Attack in Landing Configuration, Third Symposium Simulation of Wing and Nacelle Stall, June 21-22, Technical University Braunschweig (2012)Google Scholar
  14. 14.
    v. Geyr, H., Schade, N., Burg van der, J. W., Eliasson, P., Esquieu, S.: CFD Prediction of Maximum Lift Effects on Realistic High-Lift-Commercial-Aircraft-Configurations within the European Project EUROLIFT II, AIAA Paper 2007–4299 (2007)Google Scholar
  15. 15.
    Goelling, B., Bauer, M.: Fluid Actuator for Producing a Pulsed Outlet Flow in the Flow Around an Aerodynamic Body, and Discharge Device and Aerodynamic Body Equipped Therewith, US 2012/0186682 A1Google Scholar
  16. 16.
    Greenblatt, D., Wygnaski, I.: The Control of Flow Separation by Periodic Exitation. Progress in Aerospace Sciences 36, 487–545 (2000)CrossRefGoogle Scholar
  17. 17.
    Guynn M. D., et al., Refined Exploration of Turbofan Design Options for an Advanced Single-Aisle Transport. NASA/TM 2011-216883 (2011)Google Scholar
  18. 18.
    Haines, A.B.: Scale Effects on Aircraft and Weapon Aerodynamics, AGARD AG323 (1994)Google Scholar
  19. 19.
    Hauke, F., Nitsche, W.: Active Separation Control on a 2D High-Lift Wing Section towards High Reynolds Number Application. AIAA Paper 2013–2514 (2013)Google Scholar
  20. 20.
    Hecklau, M.: Experimente zur aktiven Stroemungsbeeinussung in einer Verdichterkaskade mit pulsierenden Wandstrahlen, Phd-thesis. Technical University Berlin (2012)Google Scholar
  21. 21.
    Hoell, T., Wassen, T., Thiele, F.: Numerical Incestigation of Spatially Distributed Actuation on a Three-Element High-Lift Configuration, Notes on numerical Fluid Mechanics and Multidisciplinary Design, vol. 108. Springer (2010)Google Scholar
  22. 22.
    Jeong, J., Hussain, F., On the Identification of a Vortex. Journal of Fluid Mechanics 285, 69–94 (1995)Google Scholar
  23. 23.
    Leatham, M., Stokes, S., Shaw, J., Cooper, J., Appa, J., Blaylock, T.: Automatic Mesh generation for Rapid Response Navier-Stokes Calculations. AIAA Paper 2000–2247 (2000)Google Scholar
  24. 24.
    Lengers, M.: Industrial Assessment of Overall Aircraft Driven Local Active Flow Control. In: 29th Congress of the International Council of the Aeronautical Sciences, September 7–12 (2014)Google Scholar
  25. 25.
    Mankins, J.C.: Technology Readiness Levels - A White Paper (1995)Google Scholar
  26. 26.
    Meyer, M., et al.: Designing and Testing Active Flow Control Systems at the Junction of Ultra-high Bypass Ratio Engines and the Wing, Eccomas Presentation (2014)Google Scholar
  27. 27.
    Meyer, M., Machunze, W., Bauer, M.: Towards the Industrial Application of Actve Flow Control in Civil Aircraft - An active Highlift Flap. AIAA Paper 2014–2401 (2014)Google Scholar
  28. 28.
    Neitzke, K.-P., Rudnik, R., Schroeder, S.: Low Speed Validation Tests on Engine/Airframe Integration Within the EC Project EUROLIFT II. AIAA Paper 2005–3704 (2005)Google Scholar
  29. 29.
    Nield, B.N.: An Overview of the Boeing 777 High Lift Aerodynamic Design (1995)Google Scholar
  30. 30.
    Petz, R., Nitsche, W.: Active Separation Control on the Flap of a two-dimensional Generic High-Lift Configuration. Journal of Aircraft 44 (2007)Google Scholar
  31. 31.
    Prandtl, L.: Ueber Fluessigkeitsbewegung bei sehr kleiner Reibung - Verhandlungen III. Internationaler mathematischer Kongress, Heidelberg (1904)Google Scholar
  32. 32.
    Poisson-Quinton, P., Recherches théoretiques et éxperimentales sur le contrôle de couche limite. In: 7th Congress of Applied Mechanics, Aerospace Science and Technology (1948)Google Scholar
  33. 33.
    Rudnik, R., v. Geyr, H.: The European High Lift Project EUROLIFT II Objectives, Approachand Structure. AIAA Paper 2007-4296 (2007)Google Scholar
  34. 34.
    Rudnik, R.: Stall Behavior of the Eurolift High Lift Configurations. AIAA Paper 2008–836 (2008)Google Scholar
  35. 35.
    Rudnik, R.: HINVA - High lift INflight VAlidation - Project Overview and Status. AIAA Paper 2012–0106 (2012)Google Scholar
  36. 36.
    Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA Paper 92–0439 (1992)Google Scholar
  37. 37.
    Schlichting, H., Grenzschicht-Theorie (2006)Google Scholar
  38. 38.
    van Dam, C.P.: The aerodynamic Design of Multi-Element High-Lift Systems for Transport Airplanes. Progress in Aerospace Sciences 38, 101–144 (2002)Google Scholar
  39. 39.
    Viets, H.: Flip-Flop Jet Nozzle. AIAA Journal 13(10), 1375–1379 (1975)CrossRefGoogle Scholar
  40. 40.
    Wild, J.: Mach and Reynolds Numer Dependencies of the Stall Beahaviour of High-Lift Wing Sections. Journal of Aircraft 50 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sebastian Fricke
    • 1
    Email author
  • Vlad Ciobaca
    • 1
  • Jochen Wild
    • 1
  • David Norman
    • 2
  1. 1.DLRBraunschweigGermany
  2. 2.Aircraft Research AssosiationBedfordUK

Personalised recommendations