Simulation of Longitudinal Vortices on a High-Lift Wing

  • Tim LandaEmail author
  • Jochen Wild
  • Rolf Radespiel
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 131)


The influence of longitudinal vortices on the high-lift behavior of a generic three-dimensional wing is presented. A grid convergence study is performed for the two-dimensional high-lift airfoil and different grid topologies are discussed. Numerical simulations are performed with the DLR TAU-Code at different angles of attack. For the simulations, the Menter-SST turbulence model is applied. A simplified vortex system originates at a spanwise slat cut-off. The vortex system passes along the suction side of the wing and influences the high-lift and stall behavior. The characteristics of the vortices are described and the influence on the stall mechanism is shown.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bier, N., Rohlmann, D., Rudnik, R.: Numerical Maximum Lift Prediction of a Realistic Commercial Aircraft in Landing Configuration. AIAA 2012–0279, Nashville (2012)Google Scholar
  2. 2.
    Büscher, A., Radespiel, R.: A method for the aerodynamic analysis and design of nonplanar lifting configurations an transonic speeds. Jahrbuch DGLR Bd. 1, 603–612 (2003)Google Scholar
  3. 3.
    Cécora, R.-D., Radespiel, R., Eisfeld, B., Probst, A.: Differential Reynolds-Stress Modeling for Aeronautics. Journal of Aircraft (2014). doi: 10.2514/1.J053250Google Scholar
  4. 4.
    Craft, T.J., Gerasimov, A.V., Launder, B.E., Robinson, C.M.E.: A computational study of the near-field generation and decay of wingtip vortices. International Journal of Heat and Fluid Flow 27, 684–695 (2006)CrossRefGoogle Scholar
  5. 5.
    Crippa, S., Melber-Wilkending, S., Rudnik, R.: DLR Contribution to the First High Lift Prediction Workshop. AIAA 2011–938, Orlando (2011)Google Scholar
  6. 6.
    Eliasson, P., Catalano, P, Le Pape, M.-C., Ortmann, J., Pelizzari, E., Ponsin, J.: Improved CFD Predictions for High Lift Flows in the European Project EUROLIFT II. AIAA 2007–4303, Miami (2007)Google Scholar
  7. 7.
    Emunds, R.: Leading edge vortex system of the a380 at high angles of attack in landing configuration. In: Third Symposium Simulation of Wing and Nacelle Stall, Braunschweig (2012)Google Scholar
  8. 8.
    Frhr, V., Geyr, H., Schade, N., van der Burg, J.W., Eliasson, P., Esquieu, S.: CFD Prediction of Maximum Lift Effects on Realistic High-Lift-Commercial-Aircraft-Configurations within the European project EUROLIFT II. AIAA 2007–4299, Miami (2007)Google Scholar
  9. 9.
    Hahn, D., Scholz, P., Radespiel, R.: Experimental evaluation of the stall characteristics of a two-element high-lift airfoil. In: Second Symposium Simulation of Wing and Nacelle Stall, Braunschweig (2010)Google Scholar
  10. 10.
    Long, M., Mavriplis, D.: NSU3D Results for the First AIAA High Lift Prediction Workshop. AIAA 2011–863, Orlando (2011)Google Scholar
  11. 11.
    Menter, F.R.: Zonal Two Equation k-\(\omega \) Turbulence Models for Aerodynamic Flows. AIAA 93–2906, Orlando (1993)Google Scholar
  12. 12.
    Reuß, S., Probst, A., Knopp, T.: Numerical investigation of the DLR F15 two-element airfoil using a Reynolds stress model. In: Third Symposium Simulation of Wing and Nacelle Stall, Braunschweig (2012)Google Scholar
  13. 13.
    Rudnik, R., Frhr, V., Geyr, H.: The European High Lift Project EUROLIFT II - Objectives, Approach, and Structure. AIAA 2007–4296, Miami (2007)Google Scholar
  14. 14.
    Rudnik, R.: Stall Behaviour of the EUROLIFT High Lift Configurations. AIAA 2008–836, Reno (2008)Google Scholar
  15. 15.
    Rudnik, R., Reckzeh, D., Quest, J.: HINVA - High lift INflight Validation - Project Overview and Status. AIAA 2012–0106, Nashville (2012)Google Scholar
  16. 16.
    Rudolph, P.K.C.: High-Lift Systems on Commercial Subsonic Airliners. NASA CR 4746 (1996)Google Scholar
  17. 17.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: recent applications in research and industry. In: ECCOMAS CFD 2006, Egmond aan Zee (2006)Google Scholar
  18. 18.
    Schwamborn, D., Gardner, A.D., von Geyr, H., Krumbein, A., Lüdeke, H., Stürmer, A.: Development of the DLR TAU-Code for Aerospace Applications. In: ICASAT 2008, Bangalore (2008)Google Scholar
  19. 19.
    Sclafani, A.J., Slotnick, J.P., Vassberg, J.C., Pulliam, T.H., Lee, H.C.: OVERFLOW Analysis of the NASA Trap Wing Model from the First High Lift Prediction Workshop. AIAA 2011–866, Orlando (2011)Google Scholar
  20. 20.
    Smith, A.M.O.: High Lift Aerodynamics. Journal of Aircraft 12(6), 501–530 (1975)CrossRefGoogle Scholar
  21. 21.
    Wild, J.: Numerische Optimierung von weidimensionalen Hochauftriebskonfigurationen durch Lösung der Navier-Stokes-Gleichungen. PhD thesis, Institut für Aerodynamik und Strömungsmechanik, Braunschweig (2001)Google Scholar
  22. 22.
    Wild, J., Brezillon, J., Amoignon, O., Quest, J., Moens, F., Quagliarella, D.: Advanced High-Lift Design by Numerical Methods and Wind Tunnel Verification within the European Project EUROLIFT II. AIAA 2007–4300, Miami (2007)Google Scholar
  23. 23.
    Wild, J.: Experimental investigation of Mach- and Reynolds-number dependencies of the stall behavior of 2-element and 3-element high-lift wing sections. AIAA 2012–0108, Nashville (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut für StrömungsmechanikTU BraunschweigBraunschweigGermany
  2. 2.Institut für Aerodynamik und StrömungstechnikDLR Braunschweig38108Braunschweig

Personalised recommendations