Advertisement

Computations of Separated Flows with a Hybrid RANS/LES Approach

  • Daniela G. FrancoisEmail author
  • Rolf Radespiel
  • Silvia Reuß
  • Axel Probst
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 131)

Abstract

In an effort to accurately compute nacelle stall processes, the research unit FOR1066 (Simulation of Wing and Nacelle Stall) has been working extensively on the development of advanced simulation methods. Due to the high dependency of the separation aerodynamics on the turbulent structures developed within the boundary layer, embedded LES methods appear promising to reliably compute such processes. Nevertheless, these approaches are characterized by exhibiting a very long “grey area“ (also known as adaptation distance) that may lead to the degradation of the whole solution. To shorten this adaptation distance, an advanced synthetic turbulence generator is implemented that forces the development of resolved turbulence at the inlet of the LES domain. The implementation is accessed for a zero pressure gradient flat plate, the HGR-01 airfoil, and a subsonic flow-through nacelle case. The numerical results are validated against experimental data and compared with numerical results without applying synthetic turbulence forcing. Results show that the implementation considerably reduces the required adaptation distance enhancing the overall solution. However, the success of the computation also depends on the solver numerical settings and the grid resolution.

Keywords

Reynolds Shear Stress Pressure Coefficient Distribution Attached Boundary Layer Physical Time Step Synthetic Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spalart, P., Jou, W., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES Approach. In: Advances in DNS/LES, 1st AFOSR Int. Conf. on DNS/LES, Columbus Oh (1997)Google Scholar
  2. 2.
    Spalart, P., Deck, S., Shur, M., Squires, K., Strelets, M., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics 20(3), 181–195 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Shur, M.L., Spalart, P.R., Strelets, M., Travin, A.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow 29(6), 1638–1649 (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems. Flow, Turbulence and Combustion 93, 63–92 (2014)CrossRefGoogle Scholar
  5. 5.
    Probst, A, Radespiel, R.: A Comparison of Detached-Eddy Simulation and Reynolds-Stress Modelling Applied to the Flow over a Backward-Facing Step and an Airfoil at Stall. AAIA-2010-920 (2010)Google Scholar
  6. 6.
    Knopp, T., Probst, A.: An algebraic sensor for the RANS-LES switch in delayed detached-eddy simulation. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design New Results in Numerical experimental Fluid Mechanics VIII, vol. 121. pp. 457−464 (2013). ISSN 1612-2909Google Scholar
  7. 7.
    Probst, A., Radespiel, R., Knopp, T.: Detached-Eddy Simulation of Aerodinamic Flows Using a Reynolds-Stress Background Model and Algebraic RANS/LES Sensors. AIAA-2011-3206 (2011)Google Scholar
  8. 8.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: Recent applications in research and industry. In: Wesseling, P., Oñate, E., Périaux, J. (Eds.) European Conference on Computational Fluid Dynamics (ECCOMAS CFD), TU Delft, Netherlands (2006)Google Scholar
  9. 9.
    Jarkirlic, S., Hanjalic, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. Journal of Fluid Mechanics 459, 139-166 (2002)Google Scholar
  10. 10.
    Probst, A., Radespiel, R.: Implementation and Extension of a Near-Wall Reynolds-Stress Model for Application to Aerodinamic Flows on Unstructured Mesh. AIAA-2008-770 (2008)Google Scholar
  11. 11.
    Cecora, R.D., Radespiel, R., Eisfeld, B., Probst, A.: Differential Reynolds Stress Modeling for Aeronautics. AIAA Journal (2014). doi: 10.2514/1.J053250 Google Scholar
  12. 12.
    Probst, A.: Reynoldsspannungsmodellierung für das Überziehen in der Flugzeugaerodynamik. PhD Thesis. Fakultät für Maschinenbau der Technischen Universität Carolo-Wilhelmina zu Braunschweig, Germany (2013)Google Scholar
  13. 13.
    Castillo, L., Wang, X., George, W.K.: Separation criterion for turbulent boundary layers via similarity analysis. Journal of fluid engineering 126(3), 297–304 (2004)CrossRefGoogle Scholar
  14. 14.
    Adamian, D., Travin, A.: An efficient generator of synthetic turbulence at RANS-LES interface in embedded les of wall-bounded and free shear flows. In: Computational Fluid Dynamics, pp. 739−744. Springer, Russia (2010)Google Scholar
  15. 15.
    François, D.G., Radespiel, R., Probst, A.: Forced synthetic turbulence approach to stimulate resolved turbulence generation in embedded LES. In: 5th Symposium on Hybrid RANS-LES Methods, Texas A&M University, College Station, Texas, March 19-21 (2014)Google Scholar
  16. 16.
    François, D.G., Radespiel, R., Probst, A.: Airfoil Stall Simulations with Algebraic Delayed DES and Physically Based Synthetic Turbulence for RANS-LES Transition. AIAA-2014-2574 (2014)Google Scholar
  17. 17.
    Roidl, B.: Development of a Zonal Method to efficiently Simulate Viscous Fows. PhD Thesis. Fakultät für Maschinenwesen der RWTH Aachen, Germany (2012)Google Scholar
  18. 18.
    Probst, A., Reuss, S.: Scale-resolving simulations of wall-bounded flows with an unstructured compressible solver. In: 5th Symposium on Hybrid RANS-LES Methods, Texas A&M University, College Station, Texas, March 19-21 (2014)Google Scholar
  19. 19.
    Wokoeck, R., Krimmelbein, N., Ortmanns, J., Ciobaca, V., Radespiel, R.: RANS simulation and experiments on stall behaviour of an airfoil with laminar separation bubbles. AIAA-2006-0244, Reno, Nevada (2006)Google Scholar
  20. 20.
    Probst, A., Schulze, S., Kähler, C.J., Radespiel, R.: Reynolds-Stress Modelling of Subsonic and Transonic Inlet Stall Compared to Measurements. In: 3rd Symposium “Simulation of Wing and Nacelle Stall, Braunschweig, Germany, Juni 21-22 2012 (2012)Google Scholar
  21. 21.
    Probst, A., Schulze, S., Radespiel, R., Kähler, C.J., Christian, J.: Numerical simulation of engine-inlet stall with advanced physical modelling compared to validation experiments. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design New Results in Numerical experimental Fluid Mechanics VIII, vol. 121. pp. 565−573 (2013). ISSN 1612-2909Google Scholar
  22. 22.
    Spalart, P.R.: Young person’s guide to detached-eddy simulation grids. NASA CR-2001-211032 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniela G. Francois
    • 1
    Email author
  • Rolf Radespiel
    • 1
  • Silvia Reuß
    • 2
  • Axel Probst
    • 2
  1. 1.Institut für Strömungsmechanik - TU BraunschweigBraunschweigGermany
  2. 2.Institute of Aerodynamics and Flow Technology, DLRGöttingenGermany

Personalised recommendations