Advertisement

Unsteady CFD Simulation of Transonic Axial Compressor Stages with Distorted Inflow

  • Sebastian Barthmes
  • Jakob P. HaugEmail author
  • Andreas Lesser
  • Reinhard Niehuis
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 131)

Abstract

The research unit “Simulation of Wing and Nacelle Stall” (FOR1066) funded by the DFG, Airbus, and Rolls Royce Deutschland, investigates new numerical methods to simulate wings in high lift configurations, nacelles and highly loaded compressors coupled in one single simulation environment, and coupled meteorological simulation of wind gusts. Subgroup B of FOR1066 deals with aircraft nacelle stall and its interaction with the jet engine. In this paper latest results of project B2 are presented, putting the focus on numerical investigations and detailed analyses of interaction phenomena between distorted inflow and a transonic axial compressor stage.

The challenge in simulating such configurations was approached by coupling two specialized CFD codes: TAU for the external flow around the nacelle and TRACE for the internal flow through the compressor. A coupling library has been implemented and applied to several test and validation cases. Details of the numerical complexity of the setup and initialization of coupled simulations and the challenges to approach complex configurations are outlined in the paper.

The research unit uses two different test cases to study the impact of flow distortions on transonic compressors in detail, namely the DLR-R030 test case and the axial compressor rig of TU Darmstadt in its rotor1 configuration. The Darmstadt rig has been modified for the purposes of the research unit to investigate the influence of inflow distortions on compressor performance and provided highly detailed and well validated simulation results. Different flow distortion generating devices were designed and analyzed, which led to a deeper understanding of the unsteady behavior of the flow in axial compressors. One major result is the finding, that at the distortion boundaries static pressure and inflow velocity become decoupled during their propagation through the compressor stage. This provides an explanation for the unsteady flow features observed in both experiment and simulation.

Keywords

Rotor Blade Suction Side Compressor Stage ASME Paper Distorted Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciorciari, R., Lesser, A., Blaim, F., Niehuis, R.: Tip clearance investigation for an axial transonic compressor. In: Proc. of the 10th Int. Symp. on Experimental Computational Aerothermodynamics of Internal Flows, Brussels, Belgium (2011)Google Scholar
  2. 2.
    Dunker, R., Hungenberg, H.: Transonic axial compressure using laser anemomentry and unsteady measurements. AIAA Journal 18 (1980)Google Scholar
  3. 3.
    Jerez Fidalgo, V., Hall, C.A., Colin, Y.: A Study of Fan-Distortion Interaction within the NASA Rotor 67 Transonic Stage. ASME paper GT2010-22914 (2010)Google Scholar
  4. 4.
    Gunn, E., Tooze, S., Hall, C., Colin, Y.: An Experimental Study of the Onception of Rotation Stall in a Single-Stage Low-Speed Axial Compressor. ASME paper GT2012-68888 (2012)Google Scholar
  5. 5.
    Iseler, J., Niehuis, R.: Steady and Unsteady Flow-Simulation of an Axial Transonic Compressor Stage. AIAA (2008)Google Scholar
  6. 6.
    Iseler, J.: Numerische Untersuchung des instation Strmungs- und Leistungsverhaltensvon Verdichterbeschaufelungen bei homogener und gestrter Zustrmung. PhD thesis, Fakulttfr Luft- und Raumfahrttechnik, Universitt der Bundeswehr Mnchen (2011)Google Scholar
  7. 7.
    Kelleners, P., Heinrich, R.: Accurate simulation of atmosphere-aircraft interaction. In: 19. DGLR-Fach-Symposium der STAB, November 04-05, München, Deutschland (2014)Google Scholar
  8. 8.
    Kozulovic, D., Rber, T., Kgeler, E., Nrnberger, D.: Modifications of a two-equation turbulence model for turbomachinery fluid flows. Deutscher Luft- und Raumfahrtkongress, Dresden (2004)Google Scholar
  9. 9.
    Lecht, M.: Beitrag zum Verhalten von Axialverdichterstufen, Dissertation, RWTH Aachen (1983)Google Scholar
  10. 10.
    Lesser, A., Niehuis, R.: Detailed numerical investigation of a transonic axial compressor stage with inlet distortions. In: Proc. of the 10th Int. Symp. on Experimental Computational Aerothermodynamics of Internal Flows, Brussels, Belgium (2011)Google Scholar
  11. 11.
    Lesser, A., Niehuis, R.: Numerical Investigation of a Highly Loaded Axial Compressor Stage with Inlet Distortions. ASME paper GT2011-46457 (2011)Google Scholar
  12. 12.
    Lesser, A., Ciociari, R., Barthmes, S., Niehuis, R.: Numerical investigation of the effect of inflow distortions on transonic axial compressor stages. In: Int. Symp. “Simulation of Wing and Nacelle Stall”, Braunschweig, Germany (2012)Google Scholar
  13. 13.
    Lesser, A., Niehuis, R.: A Study about Transonic Axial Compressors with Total Pressure Inlet Flow Field Distortions. ASME paper GT2014-26627 (2014)Google Scholar
  14. 14.
    Lesser, A.: Numerische Untersuchung von Axialverdichtern mit gestrter Zustrmung. PhDthesis, Fakultt fr Luft- und Raumfahrttechnik, Universitt der Bundeswehr Mnchen (2014) (to be published)Google Scholar
  15. 15.
    Longley, J.P., Greitzer, E.M.: Inlet Distortion Effects in Aircraft Propulsion System Integration. AGARD-LS-183 (1992)Google Scholar
  16. 16.
    Mazzawy, R.: Multiple Segment Parallel Compressor Model for Circumferential Flow Distortion. J. of Eng. for Power 99(2), 288–297 (1977)CrossRefGoogle Scholar
  17. 17.
    Niehuis, R., Lesser, A., Probst, A., Radespiel, R., Schulze, S., Khler, C.J., Spiering, F., Kroll, N., Wartzek, F., Schiffer, H.-P.: Simulation of nacelle stall and engine response. In: Proc. of the XXI. Int. Symp. on Air Breathing Engines (ISABE), ISABE-2013-1402, Busan, Korea (2013)Google Scholar
  18. 18.
    Nrnberger, D.: Implizite Zeitintegration fr die Simulation von Turbomaschinenstrmungen. DLR Forschungsbericht 2004-27 (2004)Google Scholar
  19. 19.
    Reid, C.: The Response of Axial Flow Compressor to Intake Flow Distortion. ASME paper 69-GT-29 (1969)Google Scholar
  20. 20.
    SAE Aerospace Information Report: Inlet Total-Pressure-Distortion Considerations for Gas-Turbine Engines. SAE AIR1419 Rev. A (1999)Google Scholar
  21. 21.
    Schulze, S., Khler, C.J., Radespiel, R.: On the comparison of stalling flow-through nacelles and powered inlets at take-off conditions. In: CEAS (2007)Google Scholar
  22. 22.
    Schulze, G.: Betriebsverhalten eines transsonischen Axialverdichters. Dissertation, TU Darmstadt (1996)Google Scholar
  23. 23.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: Recent applications in research and industry. In: Proc. of the European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006), September 5-8, Delft, The Netherlands (2006)Google Scholar
  24. 24.
    Spiering, F.: Coupling of TAU and TRACE for parallel accurate flow simulations. In: Int. Symp. “Simulation of Wing and Nacelle Stall”, Braunschweig Germany (2012)Google Scholar
  25. 25.
    Spiering, F., Kelleners, P.: Coupling of flow solvers with variable accuracy of spatial discretization. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 415–423. Springer (2014), ISBN 978-3-319-03157-6. ISSN 1612-2909Google Scholar
  26. 26.
    Wartzek, F., Brandsttter, C., Holzinger, F., Schiffer, H.-P.: Realistic inlet distortion patterns interacting with a transonic compressor stage. In: Int. Symp. “Simulation of Wing and NacelleStall” (2014)Google Scholar
  27. 27.
    Yamada, K., Furukawa, M., Nakano, T., Inoue, M., Funazaki, K.: Unsteady Three-Dimensional Flow Phenomena Due to Breakdown of Tip Leakage Vortex in a Transonic Axial Compressor Rotor. ASME paper GT2004-53745 (2004)Google Scholar
  28. 28.
    Yang, H., Nrnberger, D., Weber, A.: A Conservative Zonal Approach with Applications toUnsteady Turbomachinery Flows. DGLR-JT2002-073 (2002)Google Scholar
  29. 29.
    Yang, H., Nrnberger, D., Nicke, E., Weber, A.: Numerical Investigation of Casing Treatment Mechanisms with a Conservative Mixed-Cell Approach. ASME paper GT2003-38483 (2003)Google Scholar
  30. 30.
    Yao, J., Gorrell, S.E., Wadia, A.R.: High-Fidelity Numerical Analysis of Per-Rev-Type Inlet Distortion Transfer in Multistage Fans - Part I: Simulations with Selected Blade Rows. J. of Turbomach 132(041015), 1–10 (2010)Google Scholar
  31. 31.
    Yao, J., Gorrell, S.E., Wadia, A.R.: High-Fidelity Numerical Analysis of Per-Rev-Type Inlet Distortion Transfer in Multistage Fans - Part II: Entire Component Simulation and Investigation. J. of Turbomach 132(041015), 11–17 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sebastian Barthmes
    • 1
  • Jakob P. Haug
    • 1
    Email author
  • Andreas Lesser
    • 1
  • Reinhard Niehuis
    • 1
  1. 1.Institute for Jet PropulsionUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations