Realistic Inlet Distortion Patterns Interacting with a Transonic Compressor Stage

  • Fabian WartzekEmail author
  • Felix Holzinger
  • Christoph Brandstetter
  • Heinz-Peter Schiffer
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 131)


The formation and the interaction of inlet distortions is a safety risk in the operation of an aircraft engine. The numerical simulation of an aircraft, including the engine nacelle and the turbo-machine inside, is not possible during the design process as it is too time-consuming. To gain insight into the effects, and the impact on the engine, in particular, experiments are necessary. Due to the complexity of generating and measuring distortion patterns screens are usually used. The screens generate a total pressure drop that is constant in space and time. In this paper the interaction of a transonic compressor stage with two complex, but more realistic distortion patterns is investigated. A delta wing represents a longitudinal vortex, which is representative of e.g. a ground vortex. A stalled engine inlet is modelled by a bevelled beam that generates a massive separation bubble, which is ingested into the rotor. The interaction of the distortion and the compressor is measured at different speeds and operating points. The influence of the delta wing seems small and is difficult to measure due to the small size of the distorted area. In contrast, the beam causes a global alteration of the flow. It changes the behaviour of the rotor around the whole circumference and along the whole span.


Total Pressure Total Pressure Loss Delta Wing Longitudinal Vortex Exit Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barthmes, S., Haug, J., Lesser, A., Niehuis, R., Spiering, F.: Unsteady CFD simulation of transonic axial compressor stages with distorted inflow. In: Fourth Symposium Simulation of Wing and Nacelle Stall, Braunschweig (December 2014)Google Scholar
  2. 2.
    Colin, Y., Aupoix, B., Boussuge, J.F., Chanez, P.: Numerical simulation of the distortion generated by crosswind inlet flows. In: 18th ISABE 2007 ISABE-2007-1210 (2007)Google Scholar
  3. 3.
    Davis, M., Hale, A., Beale, D.: An argument for enhancement of the current inlet distortion ground test practice for aircraft gas turbine engines. Journal of Tur 124, 235–241 (2002)Google Scholar
  4. 4.
    Fidalgo, V.J., Hall, C.A., Colin, Y.: A study of fan-distortion interaction within the nasa rotor 67 transonic stage. Journal of Turbomachinery 134 (2012)Google Scholar
  5. 5.
    Gunn, E.J., Tooze, S.E., Hall, C.A., Colin, Y.: An experimental study of loss sources in a fan operating with continuous inlet stagnation pressure distortion. Journal of Turbomachinery 35, June 2013Google Scholar
  6. 6.
    Lieser, J.A., Biela, C., Pixberg, C.T., Schiffer, H.-P., Schulze, S., Lesser, A., Kähler, C., Niehuis, R.: Compressor rig test with distorted inflow using distortion generators. 60 Deutscher Luft- und Raumfahrtkongress DGLRK2011-241449:1507–1516, September 2011Google Scholar
  7. 7.
    Mishra, N., MacManus, D., Murphy, J.: Intake ground vortex characteristics. In: Proceedings of the Institution of Mechanical Engineers, Part G, December 2011Google Scholar
  8. 8.
    Müller, M.W.: Untersuchungen zum Einfluss von Gehäusestrukturierungen auf die Stabilität und die Leistungsdaten eines transsonischen Axialverdichters. Dissertation TU Darmstadt (2011)Google Scholar
  9. 9.
    Niehuis, R., Lesser, A., Probst, A., Radespiel, R., Schulze, S., Kähler, C., Spiering, F., Kroll, N., Wartzek, F., Schiffer, H.-P.: Simulation of nacelle stall and engine response. In: 21st ISABE Conference 2013 ISABE-2013-10135, September 2013Google Scholar
  10. 10.
    Probst, A., Schulze, S., Radespiel, R., Kähler, C.J.: Numerical and experimental investigation of a stalling flow-through nacelle. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, H.-P., Nitsche, W., Schröder, W. (eds.) Numerical and Experimental Fluid Mechanics VII. NNFM, vol. 112, pp. 537–544. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Radespiel, R., Francois, D., Hoppmann, D., Klein, S., Scholz, P., Wawrzinek, K., Lutz, T., Auerswald, T., Bange, J., Knigge, C., Raasch, S., Kelleners, P., Heinrich, R., Reuß, S., Probst, A., Knopp, T.: Simulation of wing stall. In: 43rd AIAA Fluid Dynamics Conference, pp. 2013–3175, June 2013Google Scholar
  12. 12.
    S-16 Turbine Engine Inlet Flow Distortion Committee Aerospace recommended practice. SAE Aerospace ARP1420 Rev. B (2011)Google Scholar
  13. 13.
    Schulze, G., Blaha, C., Hennecke, D.K., Henne, J.M.: The performance of a new axial single stage transonic compressor. In: Proceedings of Int Symposium of Air Breathing Engines (1995)Google Scholar
  14. 14.
    Wartzek, F., Biela, C., Pixberg, C., Schiffer, H.-P.: Modification of a compressor test rig for measuring the influence of inlet distortions on the compressor flow. In: Third Symposium Simulation of Wing and Nacelle Stall, Braunschweig (2012)Google Scholar
  15. 15.
    Wartzek, F., Brandstetter, C., Holzinger, F., Schiffer, H.-P.: Response of a transonic compressor to a massive inlet distortion. In: 11th European Turbomachinery Conference, Madrid, Spain ETC2015-086, March 2015Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fabian Wartzek
    • 1
    Email author
  • Felix Holzinger
    • 1
  • Christoph Brandstetter
    • 1
  • Heinz-Peter Schiffer
    • 1
  1. 1.Technische Universität Darmstadt, Fachgebiet für Gasturbinen, Luft- und RaumfahrtantriebeDarmstadtGermany

Personalised recommendations