Criteria for Crosswind Variations during Approach and Touchdown at Airports

  • Henk W. KrüsEmail author
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 131)


Landing in adverse wind conditions in a majorairport can sometimes result in incidents, which in some cases can be attributed to the local infrastructure. The measurement of the representative wind near a runway and touchdown zone is discussed including the influence of the built environment on the wind conditions and how representative they are. Localised rapidly changing wind conditions, or building induced turbulence, will result in aircraft attitude changes (and occasionally with consequences like hard landings, pod strikes or go-arounds). The development of the original crosswind criterion and the extended criteria which limit the crosswind and headwind variations, are presented and their application to the built environment of airports is discussed.


Turbulence Intensity World Meteorological Organization Side Force Wind Tunnel Measurement Gust Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Airbus, Flight Operations Briefing Notes - Landing Techniques - Crosswind Landings. Tech. rep., Airbus (2008)Google Scholar
  2. 2.
    Khatwa, R., Helmreich, R.: Analysis of Critical Factors During Approach and Landing in Accidents and Normal Flight. Tech. Rep. Flight Safety Digest Volume 17 & 18, Flight Safety Foundation (1999)Google Scholar
  3. 3.
    FAA, Runway Overrun Prevention. Tech. Rep. Advisory Circular AC 91–79, Federal Aviation Administration (2007)Google Scholar
  4. 4.
    FSF, Reducing the Risk of Runway Excursions - Report of the Runway Safety Initiative. Tech. rep., Flight Safety Foundation (2009)Google Scholar
  5. 5.
    Chan, P.W., Lo, W.Y., Leung, D.Y.C.: In The 5th Int. Symp. on Computational Wind Engineering (CWE2010) (Chapel Hill, North Carolina, USA, 2010)Google Scholar
  6. 6.
    AAIB, AAIB Bulletin: 6/2002, Airbus Industrie A300, G-MONS. Tech. Rep. EW/C2002/02/05, Air Accidents Investigation Branch (2010)Google Scholar
  7. 7.
    ATSB, Boeing Co 737–476, VH-TJG, Canberra Airport, 5 November 2002. Tech. Rep. ATSB-200205179, Australian Transport Safety Bureau (2002)Google Scholar
  8. 8.
    AAIB, Multiple nacelle ground collisions, Boeing 747–412, B-KAG. Tech. Rep. EW/C2008/03/01, Air Accidents Investigation Branch (2009)Google Scholar
  9. 9.
    AAIB, Serious incident during aborted landing, Airbus A300-B4-622R, TF-ELK. Tech. Rep. EW/C2011/01/03, Air Accidents Investigation Branch (2012)Google Scholar
  10. 10.
    BFU, Untersuchungsbericht zu einer schweren Störung in Hamburg. Tech. Rep. 5X003-0/08, Bundesstelle für Flugunfalluntersuchung (2008)Google Scholar
  11. 11.
    NTSB, Runway Side Excursion During Atttempted Takeoff in Strong and Gusty Crosswind Conditions, Continental Airlines Flight 1404, Boeing 737–500, N18611, Denver, Colorado, December 20, 2008. Tech. Rep. NTSB/AAR-10/04, National Transportation Safety Board (2010)Google Scholar
  12. 12.
    Rijkoort, P.: Reductie van windsnelheidsgemiddelden van de anemometer op de toren te De Bilt in verband met de bepaling van windnormalen. Tech. Rep. KNMI V-159, KNMI, De Bilt (1964)Google Scholar
  13. 13.
    Wieringa, J.: Boundary Layer Meteorology 3, 424 (1973)Google Scholar
  14. 14.
    Wieringa, J.: Bestaat representatieve grondwindmeeting? Tech. Rep. KNMI V-257, KNMI, De Bilt (1974)Google Scholar
  15. 15.
    Wieringa, J.: Quart. J. Royal Meteorological Soc. 102(431), 241 (1976)Google Scholar
  16. 16.
    Beljaars, A.C.M.: De invloed van meetsystemen op de waarneming van gemiddelden, standaarddeviaties en maxima. Tech. Rep. WR 83–2, KNMI, De Bilt (1983)Google Scholar
  17. 17.
    Beljaars, A.C.M.: The measurement of gustiness at routine wind stations: a review. Tech. Rep. WR 87–11, KNMI, De Bilt (1987)Google Scholar
  18. 18.
    Verkaik, J.W.: Journal of Applied Meteorology 39(9), 1613 (2000)Google Scholar
  19. 19.
    Wichers Schreur, B., Geertsema, G.: HIRLAM Newsletter 54 (2008)Google Scholar
  20. 20.
    Panofsky, H.A., Dutton, J.A.: Atmospheric turbulence models and methods for engineering aplications (John Wiley & Sons Ltd., 1984)Google Scholar
  21. 21.
    WMO, Guide to Meteorological Instruments and Methods of Observation. Report WMO-No.8, World Meteorological Organization (WMO) (2008)Google Scholar
  22. 22.
    Krüs, H.W., Haanstra, J.O., van der Ham, R., Wichers Schreur B.: Journal of Wind Engineering and Industrial Aerodynamics 91, 1215 (2003)Google Scholar
  23. 23.
    van Es, G.W.H.: Analysis of existing practices and issues regarding near-ground wind gust information for flight crews. Tech. Rep. NLR-CR-2012-143, National Aerospace Laboratory NLR (2012)Google Scholar
  24. 24.
    Lelaie, C.: A380 Flight tests (presentation). Tech. rep, Airbus (2008)Google Scholar
  25. 25.
    AAIU, Serious incident to MD 11, N803DE, at Dublin Airport, 3 February 2002. Tech. Rep. AAIU-2003/004, Air Accident Investigation Unit (2003)Google Scholar
  26. 26.
    Nieuwpoort, A.M.H., Gooden, J.H.M., de Prins, J.L.: Wind criteria due to obstacles at and around airports. Tech. Rep. NLR-CR-2006-261, Nationaal Lucht- en Ruimtevaart Laboratorium, NLR (2006)Google Scholar
  27. 27.
    Eurocontrol, A Study of Runway Excursions from a European Perspective. Tech. Rep. 10/04/13-59, European Organisation for the Safety of Air Navigation (2010)Google Scholar
  28. 28.
    A.M.H. Nieuwpoort, J.H.M. Gooden, J.L. de Prins, Wind criteria due to obstacles at and around airports. Tech. Rep. NLR-TP-2010-312, Nationaal Lucht- en Ruimtevaart Laboratorium, NLR (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mott MacDonald LtdCroydonUK
  2. 2.Cyclone Fluid Dynamics BVWaalreThe Netherlands

Personalised recommendations