Skip to main content

Augmented Reality in UAVs Applications

  • Chapter
  • First Online:
Innovative Simulation Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 33))

Abstract

We present the example of Attitude Indicator Augmented Reality (AR) control for the unmanned aerial vehicles (UAV) ground control station. The article describes perspective heads-up display overlaid on the image, which is acquired from the UAV rotatable camera. Article shows the mechanisms of aircraft camera calibration with the AR artificial horizon. The whole algorithm of the render instructions is presented. Elements used in the augmented reality are as follows: 3D artificial horizon, latitude and longitude, GPS info, executed command, time to command end, percent of command accomplish, fuel and battery level, height and speed vertical scale, landing field direction arrow, unmanned vehicles marks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jędrasiak, K., Bereska, D., Nawrat, A.: The prototype of gyro-stabilized uav gimbal for day-night surveillance. In: Advanced Technologies for Intelligent Systems of National Border Security, Studies in Computational Intelligence, vol. 440, pp. 107–115 (2013)

    Google Scholar 

  2. Gałuszka, A., Skrzypczyk, K., Bereska, D., Pacholczyk, M.: Re-handling operations in small container terminal operated by reach stackers. World Acad. Sci. Eng. Technol. 70, 674–677 (2010)

    Google Scholar 

  3. Niezgoda, T., Panowicz, R., Sybilski, K., Barnat, W.: Numerical analysis of missile impact being shot by rocket propelled grenades with rod amour. WIT Trans. Model. Simul. 51, 625–633 (2011)

    Article  Google Scholar 

  4. Kuś, Z., Nawrat, A.M.: The limitation for the angular velocity of the camera head during object tracking with the use of the UAV. In: Innovative Control Systems for Tracked Vehicle Platforms, Studies in Systems, Decisions and Control, vol. 2, pp. 127–145 (2014)

    Google Scholar 

  5. Kuś, Z., Nawrat, A.M.: Camera head control system with a changeable gain in a proportional regulator for object tracking. In: Innovative Control Systems for Tracked Vehicle Platforms, Studies in Systems, Decisions and Control, vol. 2, pp. 105–125 (2014)

    Google Scholar 

  6. Babiarz, A., Bieda, R., Jaskot, K.: A distributed control group of mobile robots in a limited area with a vision system. In: Vision Based Systems for UAV Applications, Studies in Computational Intelligence, vol. 481, pp. 157–175 (2013) (ISBN: 978-3-319-00368-9)

    Google Scholar 

  7. Wang, X., Vivek, Y., Balakrishnan, S.N.: Cooperative UAV formation flying with obstacle/collision avoidance. IEEE Trans. Control Syst. Technol. 15(4) (July 2007)

    Google Scholar 

  8. Kownacki, C.: Obstacle avoidance strategy for micro aerial vehicle. In: Advances in Aerospace Guidance, Navigation and Control, pp. 117–135 (2011)

    Google Scholar 

  9. Kownacki, C.: Control algorithm of micro aerial vehicle flight in streets’ canyons based on vision system, Faculty of Mechanical Engineering, Białystok Technical University, ul. Wiejska 45 C, 15–351 Białystok

    Google Scholar 

  10. McGee, T.G.: Obstacle detection for small autonomous aircraft using sky segmentation. In: Robotics and Automation ICRA 2005 (2005)

    Google Scholar 

  11. Frew, E.: Vision-based road following using a small autonomous aircraft. In: Aerospace Conference (2004)

    Google Scholar 

  12. International Civil Aviation Organization Cir 328, “Unmanned Aircraft Systems” (UAS), http://www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf, 04.2014

  13. Niezgoda, T., Barnat, W.: Analysis of protective structures made of various composite materials subjected to impact. Mater. Sci. Eng., A 483, 705–707 (2008)

    Article  Google Scholar 

  14. Bibik, P., Zasuwa, M., Zugaj, M.: Research and training symulator of unmanned quadrotor. In: 18th IEEE International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 403–407 (2013)

    Google Scholar 

  15. Bereska, D., Balcewicz, R., Garczyński, M.: Implementacja magistrali CAN i protokołu CANopen w robocie edukacyjnym. Szybkobieżne Pojazdy Gąsienicowe 1, 157–162 (2008)

    Google Scholar 

  16. Czapla, T., Wrona, J.: Technology development of military applications of unmanned ground vehicles. In: Vision Based Systems for UAV Applications, Studies in Computational Intelligence, vol. 481, pp. 293–309 (2013) (ISBN: 978-3-319-00368-9)

    Google Scholar 

  17. Zeng, J.: System framework and standards of ground control station of unmanned aircraft system. Electr. Eng. Control, LNEE 98, 327–334

    Google Scholar 

  18. Nawrat, A., Jędrasiak, K., Daniec, K., Koteras, R.: Inertial Navigation Systems and Its Practical Applications (2012)

    Google Scholar 

  19. Iwaneczko, P., Jedrasiak, K., Daniec, K., Nawrat, A.: Design and Implementation of mobile ground base station for UGV. In: Innovative Control Systems for Tracked Vehicle Platforms, pp. 57–71 (2014)

    Google Scholar 

  20. Artificial Horizons from Castleberry Instruments, Falcon Gauge, RC Allen and Trutrak Flight Systems. http://sarasotaavionics.com/category/flight-instruments/artificial-horizon, 04.2014

  21. ESC Aerospace, RPAS/UAS GCS (GROUND CONTROL SYSTEM) “TAJFUN”, http://www.esc-aerospace.com/eshop/index.php?controller=attachment&id_attachment=3, 04.2014

  22. Lockheed Martin, VCS-4586 Ground Control Operator Software for Unmanned Vehicle Systems, http://www.lockheedmartin.com/content/dam/lockheed/data/ms2/documents/cdl-systems/VCS-4586%20CAPABILITIES%20GUIDE-August2013.pdf 04.2014

  23. Stevenson, A.: Oxford Dictionary of English. In: Heads-Up Display. Oxford University Press, Oxford, page 809 (2010)

    Google Scholar 

  24. Jędrasiak, K., Daniec, K., Nawrat, A., Koteras, R.: Wykorzystanie kamer termowizyjnych w systemach dozoru wizyjnego infrastruktury krytycznej sieci dystrybucyjnych gazu. Przegląd Elektrotechniczny 88, 90–97 (2012)

    Google Scholar 

  25. Ryt, A., Sobel, D., Kwiatkowski, J., Domzal, M., Jedrasiak, K., Nawrat, A.: Real-time laser point tracking. In: Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 8671. pp. 542–551 (2014)

    Google Scholar 

  26. Daniec, K., Iwaneczko, P., Jędrasiak, K., Nawrat, A.: Vision Based Systems for UAV Applications, Studies in Computational Intelligence, vol. 481, pp. 219–232 (2013) (ISBN: 978-3-319-00368-9)

    Google Scholar 

  27. Jedrasiak, K., Andrzejczak, M., Nawrat, A.: SETh: The Method for Long-Term Object Tracking. In: Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 8671, pp. 302–315 (2014)

    Google Scholar 

  28. FY-DOS OSD, est_fpv_and_uav_set_for_rc_air_plane_FY_OSD.html, 04.2014

    Google Scholar 

  29. Skylark Tiny OSD III, http://www.nem.gr/skylark-tiny-osd-iii-set-p33842.html

  30. Gałuszka, A., Pacholczyk, M., Bereska, D., Skrzypczyk, K.: Planning as artificial intelligence problem—short introduction and overview. In: Advanced Technologies for Intelligent Systems for National Border Security, pp. 95–103 (2013)

    Google Scholar 

  31. Antosz, P., Bereska, D., Gatys, K., Niedziela, T., Szota, P.: Multiłącznik IMPRESJA IQ-element instalacji inteligentnego budynku wykorzystującej magistralę CAN. Szybkobieżne Pojazdy Gąsienicowe 1, 99–106 (2011)

    Google Scholar 

  32. Tadema, J., Theunissena, E., Koeners, J.: Using perspective guidance overlay to improve UAV manual control performance. In: Enhanced and Synthetic Vision 2007, vol. 6559, Orlando, Florida, USA, 09 Apr 2007

    Google Scholar 

  33. Drake, S.P.: “Converting GPS Coordinates (φλh) to Navigation Coordinates (ENU)”, http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/3538/1/DSTO-TN-0432.pdf, Surveillance Systems Division Electronics and Surveillance Research Laboratory

  34. Iwaneczko, P., Jędrasiak, K., Daniec, K., Nawrat, A.: A prototype of unmanned aerial vehicle for image acquisition. In: Computer Vision and Graphics Lecture Notes in Computer Science, vol. 7594, pp. 87–94 (2012)

    Google Scholar 

Download references

Acknowledgment

This work has been supported by Applied Research Programme of the National Centre for Research and Development as a project ID 178438 path A—Costume for acquisition of human movement based on IMU sensors with collection, visualization and data analysis software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Jędrasiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iwaneczko, P., Jędrasiak, K., Nawrat, A. (2016). Augmented Reality in UAVs Applications. In: Nawrat, A., Jędrasiak, K. (eds) Innovative Simulation Systems. Studies in Systems, Decision and Control, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-21118-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21118-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21117-6

  • Online ISBN: 978-3-319-21118-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics