Skip to main content

Application of Genetic Algorithms for Identification of Simulated Systems

  • Chapter
  • First Online:
  • 940 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 33))

Abstract

A new system identification method (TSGA) based on Genetic Algorithms for system simulation is presented. The method is performed in two steps (S1 and S2). In each step of the method, a new approach to the population definition and identification process are applied for identification of parameters of system model. The simulated model with identified parameters is used for simulations of the system behavior. The method is suitable to linear as well as nonlinear models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mężyk, A., Dobrzaniecki, P.: Optimization of operating parameters of the drive system on the example of a mining rail-vehicle. Ind. Transp. Mach. 2, 46–49 (2011)

    Google Scholar 

  2. Nawrat, A., Skorek, J.: Inverse approach and sensitivity analysis for identification of ingot mould thermal resistance in continuous casting of metals. Int. J. Comput. Fluid Dyn. (2005). ISSN:1061 8562

    Google Scholar 

  3. Puttige, V.R., Anavatti, S.G.: Real-time multi-network based identification with dynamic selection implemented for a low cost UAV. In: IEEE International Conference on Systems, Man and Cybernetics, Montreal (2007)

    Google Scholar 

  4. Zugaj, M., Narkiewicz, J.: Autopilot for reconfigurable flight control system. In: 7th International Seminar on Recent Research and Design Progress in Aeronautical Engineering and Its Influence on Education, Tallin, Estonia (2006)

    Google Scholar 

  5. Ward, D.G., Barron, R.L., Carley, M.P., Curtis, T.J.: Real-time parameter identification for self-designing flight control. In: Proceedings of the IEEE 1994 National Aerospace and Electronics Conference, vol. 1, pp. 526–531 (1994)

    Google Scholar 

  6. Bibik, P., Narkiewicz, J.: Helicopter optimal control after power failure using comprehensive dynamic model. J. Guidance Control Dyn. 35(4), 1354–1362 (2012). doi:10.2514/1.51371

    Article  Google Scholar 

  7. Andrzejczak, M., Narkiewicz, J.: An on-line system prediction of the vessel position based on Julier-Uhlmann filter. In: Proceedings of 11th Saint Petersburg International Conference on Integrated Navigation Systems, Saint Petersburg (2004)

    Google Scholar 

  8. Söderström, T., Stoica, P.: System Identification. PWN, Warszawa (1997)

    Google Scholar 

  9. Ulinowicz, M., Narkiewicz, J.: Identification of EMA Dynamic Model, Mechatronics Recent Technological and Scientific Advances, pp. 375–385. Springer, Berlin (2011)

    Google Scholar 

  10. Ulinowicz, M., Narkiewicz, J.: Modeling and identification of actuator for flap deflection. J. Autom. Mob. Robot. Intell. Syst. JAMRIS (2012) http://link.springer.com/chapter/10.1007%2F978-3-642-05241-5_10

  11. Jarzębowska, E.: A velocity observer design for tracking task-based motions of unicycle type mobile robots. Commun. Nonlinear Sci. Numer. Simul. 16, 2301–2307 (2011). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  12. Mężyk, A.: The use of optimization procedures in tuning vibration dampers. Eng. Optim. 34(5), 503–521 (2002)

    Article  Google Scholar 

  13. Priifer, M., Schmidt, C., Wahl, E.: Identification of robot dynamics with differential and integral models: a comparison. In: IEEE International Conference on Robotics and Automation, San Diego CA, vol. 1, pp. 340–345 (1994)

    Google Scholar 

  14. Babiarz, A., Bieda, R., Jaskot, K.: A distributed control group of mobile robots in a limited area with a vision system. In: Vision Based Systems for UAV Applications. Studies in Computational Intelligence, vol. 481, pp. 157–175 (2013). ISBN:978-3-319-00368-9

    Google Scholar 

  15. Czornik, A., Nawrat, A.: On controllability of linear systems with jumps in parameters. Adv. Intell. Soft Comput. 118, 57–81 (2012)

    Article  Google Scholar 

  16. Osowski, S.: Dynamic Systems and Processes Modeling and Simulation. WUT Publishing House, Warsaw (2007)

    Google Scholar 

  17. Burczyński, T., Kuś, W., Brodacka, A.: Multiscale modeling of osseous tissues. J. Theor. Appl. Mech. 48(4), 855–870 (2010)

    Google Scholar 

  18. Kuś, W., Burczyński, T.: Bioinspired Algorithms in Multiscale Optimization, Computer methods in Mechanics, pp. 183–192. Springer, Berlin (2010)

    Google Scholar 

  19. Dimogianopoulos, D.G., Hios, J.D., Fassois, S.D.: Statistical fault detection and identification in aircraft systems via functionally pooled nonlinear modeling of flight data dependencies, Greece, 2006

    Google Scholar 

  20. Klein, V., Murphy, P.C.: Aerodynamic parameters of high performance aircraft estimated from wind tunnel and flight testing. NATO Res. and Tech. Org., March 1999 RTO-MP-11, Paper 18

    Google Scholar 

  21. De Jong, K.A.: Evolutionary Computation: A Unified Approach. The Massachusetts Institute of Technology Press, Cambridge (2006)

    Google Scholar 

  22. Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Berlin (2008)

    MATH  Google Scholar 

  23. Ulinowicz, M.: Identification of aeronautical system parameters using a genetic algorithm. Ph.D. thesis, WUT (2013)

    Google Scholar 

  24. Zugaj, M., Narkiewicz, J.: Autopilot for Reconfigurable Flight Control System. J. Aerosp. Eng. 22(1), 78–84 (2009)

    Google Scholar 

  25. Jategaonkar, Ravindra V.: Flight Vehicle System Identification, A Time Domain Methodology. American Institute of Aeronautics and Astronautics, Reston, Virginia (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyna Ulinowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ulinowicz, M., Narkiewicz, J. (2016). Application of Genetic Algorithms for Identification of Simulated Systems. In: Nawrat, A., Jędrasiak, K. (eds) Innovative Simulation Systems. Studies in Systems, Decision and Control, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-21118-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21118-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21117-6

  • Online ISBN: 978-3-319-21118-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics