Skip to main content

The System for Augmented Reality Motion Measurements Visualization

  • Chapter
  • First Online:
Innovative Simulation Systems

Abstract

The system which allows for visualisation of range of motion examination has been developed. The visualisation is clear and in simple manner presents measured angles in the joints. Measurement is based on data from motion capture system about location of the markers on the patient. Markers are place at key locations in this way that connection of next three form an angle which vertex is situated in the joint. Image from the camera directed at the patient is extended by adding lines, angles and the numerical values of the current value of the angle of flexion of the limb directly on the limbs of the patient. The accuracy of the measurement depends mainly on the accuracy of the motion capture system and is of order of tens of micrometres. The precision of the measurement and repeatability is a advantage of the system because the classical methods based on the use of goniometer are dependent on the individual interpretation of the physiotherapist. In addition the test may be carried out in movement such as walking and for more limbs than one at a time. During of the examination patient is not limited in movement by the measuring device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wochlik, I., Bułka, J., Folwarczny, Ł., Daniec, K., Jędrasiak, K., Koteras, R., Nawrat, A.: Application of telemedical technologies in remote evaluation of soldiers’ vital signs during training and in combat conditions. In: Innovative Control Systems for Tracked Vehicle Platforms, pp. 189–202 (2014)

    Google Scholar 

  2. Gajdosik, R.L., Bohannon, R.W.: Clinical measurment of range of motion: review of goniometry emphasizing reliability and validity, Phys. Ther. 67 (1987)

    Google Scholar 

  3. Bibik, P., Zasuwa, M., Zugaj, M.: Research and training symulator of unmanned quadrotor. In: 18th IEEE International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 403–407 (2013)

    Google Scholar 

  4. Babiarz, A., Jaskot, K., Koralewicz, P.: The control system for autonomous mobile platform. In: Advanced Technologies for Intelligent Systems of National Border Security, Studies in Computational Intelligence, vol. 440, pp. 15–28 (2013)

    Google Scholar 

  5. Bereska, D., Balcewicz, R., Garczyński, M.: Implementacja magistrali CAN i protokołu CANopen w robocie edukacyjnym, Szybkobieżne Pojazdy Gąsienicowe, vol. 1, pp. 157–162 (2008)

    Google Scholar 

  6. Gałuszka, A., Bereska, D., Simek, K., Skrzypczyk, K., Daniec, K.: Wykorzystanie Elementów Teorii Grafów w Systemie Analiz Kryminalnych, Przegląd Elektrotechniczny, vol. 86, pp. 278–283 (2010)

    Google Scholar 

  7. Gałuszka, A., Skrzypczyk, K., Bereska, D., Pacholczyk, M.: Re-handling operations in small container terminal operated by reach stackers. World Acad. Sci. Eng. Technol. 70, 674–677 (2010)

    Google Scholar 

  8. Czapla, T., Wrona, J.: Technology development of military applications of unmanned ground vehicles. In: Vision Based Systems for UAV Applications, Studies in Computational Intelligence, vol. 481, pp. 293–309 (2013). (ISBN: 978-3-319-00368-9)

    Google Scholar 

  9. Niezgoda, T., Panowicz, R., Sybilski, K., Barnat, W.: Numerical analysis of missile impact being shot by rocket propelled grenades with rod armour. WIT Trans. Model. Simul. 51, 625–633 (2011)

    Article  Google Scholar 

  10. Biometrics Ltd.: Goniometr and torsiometer operating manual, acces via Internet: http://www.biometricsltd.com. Access: Apr 2014

  11. HALO Proffesional Digital Goniometers, acces via Internet: http://www.halo-goniometer.com. Acces: Apr 2014

  12. Rothstein, J.M., Miller, P.J., Rottger, R.F.: Goniometry reliability in a clinical setting: elbow and knee measurments. Phys. Ther. 63 (1983)

    Google Scholar 

  13. Świtoński, A., Josiński, H., Jędrasiak, K., Polański, A., Wojciechowski, K.: Classification of poses and movement phases. In: Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 6374, pp. 193–200 (2010)

    Google Scholar 

  14. Sobel, D., Jędrasiak, K., Daniec, K., Wrona, J., Jurgaś, P., Nawrat, A.: Camera calibration for tracked vehicles augmented reality applications. In: Innovative Control Systems for Tracked Vehicle Platforms, pp. 147–162 (2014)

    Google Scholar 

  15. Sobel, D., Kwiatkowski, J., Ryt, A., Domżał, M., Jędrasiak, K., Janik, Ł., Nawrat, A.: Range of motion measurements using motion capture data and augmented reality visualization. In: Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 8671, pp. 594–601 (2014)

    Google Scholar 

  16. Kuś, Z., Nawrat, A.M.: The limitation for the angular velocity of the camera head during object tracking with the use of the UAV. In: Innovative Control Systems for Tracked Vehicle Platforms, Studies in Systems, Decisions and Control, vol. 2, pp. 127–145 (2014)

    Google Scholar 

  17. Jedrasiak, K., Andrzejczak, M., Nawrat, A.: SETh: the method for long-term object tracking. In: Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 8671, pp. 302–315 (2014)

    Google Scholar 

  18. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. RA-3(4) (Aug 1987)

    Google Scholar 

  19. Sobel, D., Jedrasiak, K., Daniec, K., Wrona, J., Nawrat, A.: Camera calibration for tracked vehicles augmented reality applications. In: Innovative Control Systems for Tracked Vehicle Platforms. Springer, Berlin (2014)

    Google Scholar 

  20. Kniaz, K.: LMA, acces via Internet: http://kniaz.net/software/LMA.aspx. Acces: Feb 2014

  21. Gavin, H.P.: The Levenberg-Marquardt method for nonlinear east squares curie-fitting problems, Department of Civil and Environmental Engineering, Duke University, 9 Oct 2013

    Google Scholar 

  22. Babiarz, A., Bieda, R., Jaskot, K.: Vision system for group of mobile robots. In: Nawrat, A. et al. (eds.) Advances Technologies for Intelligent Systems, SCI 440, pp. 137–154. Springer, Berlin (2013)

    Google Scholar 

  23. Official OpenCv website, acces via Internet: http://opencv.org/. Acces: Mar 2014

  24. Iwaneczko, P., Jędrasiak, K., Daniec, K., Nawrat, A.: A prototype of unmanned aerial vehicle for image acquisition. In: Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 7594, pp. 87–94, (2012)

    Google Scholar 

  25. Babiarz, A., Bieda, R., Jaskot, K.: A distributed control group of mobile robots in a limited area with a vision system. In: Vision Based Systems for UAV Applications, Studies in Computational Intelligence, vol. 481, pp. 157–175 (2013) (ISBN: 978-3-319-00368-9)

    Google Scholar 

  26. Bereska, D., Daniec, K., Fraś, S., Jędrasiak, K., Malinowski, M., Nawrat, A.: System for multi-axial mechanical stabilization of digital camera. In: Vision Based Systems for UAV Applications, Studies in Computational Intelligence, vol. 481, pp. 117–189 (2013) (ISBN: 978-3-319-00368-9)

    Google Scholar 

  27. Jaskot, K., Babiarz, A., Sroka, M., Ściegienka, P.: Prototyp bezzałogowego pojazdu podwodnego – konstrukcja mechaniczna, panel operatora, Przegląd Elektrotechniczny, vol. 89, pp. 52–67 (2013)

    Google Scholar 

  28. Sroka, M., Ściegienka, P., Babiarz, A., Jaskot, K.: Prototyp bezzałogowego pojazdu podwodnego – układ stabilizacji i utrzymania zadanego kursu. Przegląd Elektrotechniczny 89, 205–217 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Sobel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sobel, D. et al. (2016). The System for Augmented Reality Motion Measurements Visualization. In: Nawrat, A., Jędrasiak, K. (eds) Innovative Simulation Systems. Studies in Systems, Decision and Control, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-21118-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21118-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21117-6

  • Online ISBN: 978-3-319-21118-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics