Skip to main content

Systems Theory as a Foundation for Discovery of Pathologies for Complex System Problem Formulation

  • Chapter
  • First Online:
Book cover Applications of Systems Thinking and Soft Operations Research in Managing Complexity

Abstract

This chapter articulates a set of systems theory-based pathologies that act to limit performance of complex systems. In response to the common mantra that problem formulation is the most important activity in successfully dealing with complex system problems, this research elaborates on the utility of systems theory as the basis for problem formulation through the discovery of system pathologies. Pathologies are taken as circumstances that act to limit system performance or lessen system viability (continued existence) and as such they reduce the likelihood of a system meeting performance expectations. As an extension of contemporary developments in systems theory, this chapter is focused on three primary objectives. First, systems theory is examined to generate a comprehensive set of 45 principles, laws and concepts that explain system behavior and performance. Second, a set of systems theory-based pathologies that can be explained as deviation in application of systems theory (i.e., lack of use or violation) are articulated. Third, the chapter discusses implications of the developed pathologies for practitioners faced with the task of formulating complex system problems. The chapter concludes with proposed future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackoff RL (1971) Towards a system of systems concepts. Manage Sci 17(11):661–671. doi:10.1287/mnsc.17.11.661

    Article  Google Scholar 

  • Ackoff RL (1977) Optimization + objectivity = optout. Eur J Oper Res 1(1):1–7. doi:10.1016/S0377-2217(77)81003-5

    Article  MATH  Google Scholar 

  • Adams KM (2012) Systems theory: a formal construct for understanding systems. Int J Syst Syst Eng 3(3/4):209–224. doi:10.1504/IJSSE.2012.052684

    Article  Google Scholar 

  • Adams KM, Hester PT, Bradley JM, Meyers TJ, Keating CB (2014) Systems theory as the foundation for understanding systems. Sys Eng 17(1):112–123. doi:10.1002/sys.21255

    Article  Google Scholar 

  • Aizermann MA (1975) Fuzzy sets, fuzzy proofs and some unresolved problems in the theory of automata control. Presented at the special interest discussion session on fuzzy automata and decision processes, 6th IFAC World Congress, Boston

    Google Scholar 

  • Argyris C, Schön D (1978) Organizational learning: a theory of action perspective. Addison-Wesley, Reading, MA

    Google Scholar 

  • Aristotle (2002) Metaphysics: Book H—Form and Being at Work, 2nd edn. (trans: Sachs J). Green Lion Press, Santa Fe

    Google Scholar 

  • Ashby WR (1956) An introduction to cybernetics. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Ashby WR (1962) Principles of the self-organizing system. In: von Foerster H, Zopf G (eds) Principles of self-organization. Pergamon Press, New York, pp. 255–278

    Google Scholar 

  • Auerbach CF, Silverstein LB (2003) Qualitative data: an introduction to coding and analysis. New York University Press, New York

    Google Scholar 

  • Aulin A (1982). The cybernetic laws of social progress: toward a critical social philosophy of Marxism, 1st edn. New York: NY: Pergamon Press

    Google Scholar 

  • Aulin-Ahmavaara AY (1979) The law of requisite hierarchy. Kybernetes 8(4):259–266. doi:10.1108/eb005528

    Article  MATH  Google Scholar 

  • Barnard CI (1946) Functions and pathology of status systems in formal organizations. In: Whyte WF (ed) Industry and Society. McGraw-Hill, New York, pp 46–83

    Chapter  Google Scholar 

  • Bateson G (1972) Steps to an ecology of mind. Jason Aronson Inc, New York

    Google Scholar 

  • Becvar DS, Becvar RJ (1999) Systems theory and family therapy: a primer, 2nd edn. University Press of America, Lanham

    Google Scholar 

  • Beer S (1978) Platform for change. Wiley, Chichester

    Google Scholar 

  • Beer S (1979) The heart of the enterprise. Wiley, New York

    Google Scholar 

  • Beer S (1981) Brain of the firm: the managerial cybernetics of organization. Wiley, Chichester

    Google Scholar 

  • Beer S (1984) The viable system model: its provenance, development, methodology and pathology. J Oper Res Soc 35(1):7–25. doi:10.2307/2581927

    Article  Google Scholar 

  • Bergvall-Kareborn B (2002) Enriching the model-building phase of soft systems methodology. Syst Res Behav Sci 19(1):27–49

    Article  Google Scholar 

  • Bohr N (1928) The quantum postulate and the recent development of atomic theory. Nature 121(3050):580–590

    Article  MATH  ADS  Google Scholar 

  • Boulding KE (1966) The impact of social sciences. Rutgers University Press, New Brunswick

    Google Scholar 

  • Bowen K (1998) Some thoughts on multimethodology. Syst Pract Action Res 11(2):169–177

    Article  Google Scholar 

  • Bowler D (1981) General systems thinking. North Holland, New York

    Google Scholar 

  • Boyatzis RE (1998) Transforming qualitative information: Thematic analysis and code development. Sage, Thousand Oaks

    Google Scholar 

  • Buckley W (1967) Sociology and modern systems theory. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Butler-Kisber L (2010). Qualitative inquiry: thematic, narrative, and arts-informed perspectives. Sage, London

    Google Scholar 

  • Bynum WF, Porter R (1997) Companion encyclopedia of the history of medicine, 1st edn. Routledge, New York

    Google Scholar 

  • Calida BY, Katina PF (2012) Regional industries as critical infrastructures: a tale of two modern cities. Int J Crit Infrastruct 8(1):74–90. doi:10.1504/IJCIS.2012.046555

    Article  Google Scholar 

  • Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9(3):399–431

    Google Scholar 

  • Capra F (1982) The turning point: Science, society, and the rising culture. Simon and Schuster, New York

    Google Scholar 

  • Casti J (2012) X-Events: complexity overload and the collapse of everything. William Morrow, New York

    Google Scholar 

  • Checkland PB (1985) Formulating problems for systems analysis. In: Miser HS, Quade ES (eds) Handbook of systems analysis: overview of uses, procedures, applications, and practice. Elsevier Science Publishing Co., Inc, New York, pp. 152–170

    Google Scholar 

  • Checkland PB (1993) Systems thinking, systems practice. Wiley, New York

    Google Scholar 

  • Checkland PB (1999) Systems thinking, systems practice. Wiley, New York

    Google Scholar 

  • Checkland PB, Scholes J (1990) Soft systems methodology in action. Wiley, Chichester. Retrieved from http://www.amazon.com/dp/0471986054

  • Cherns A (1976) The principles of sociotechnical design. Hum Relat 29(8):783–792. doi:10.1177/001872677602900806

    Article  Google Scholar 

  • Cherns A (1987) Principles of sociotechnical design revisited. Hum Relat 40(3):153–161

    Article  Google Scholar 

  • Cilliers P (1998) Complexity and postmodernism: understand complex systems. Routledge, New York

    Google Scholar 

  • Clegg CW (2000) Sociotechnical principles for system design. Appl Ergonomics 31(5):463–477

    Article  Google Scholar 

  • Clemson B (1984) Cybernetics: a new management tool. Abacus Press, Tunbridge Wells

    Google Scholar 

  • Crownover MWB (2005) Complex system contextual framework (CSCF): a grounded-theory construction for the articulation of system context in addressing complex systems problems. Dissertation, Old Dominion University, Norfolk

    Google Scholar 

  • Cummings TG, Worley CG (2005) Organization development and change, 8th edn. Cengage Learning, Mason

    Google Scholar 

  • D’Alembert J (1743) Traité de dynamique. David l’Ainé, Paris

    Google Scholar 

  • Dery D (1984) Problem definition in policy analysis. University Press of Kansas, Lawrence

    Google Scholar 

  • DeSantis L, Ugarriza DN (2000) The concept of theme as used in qualitative nursing research. West J Nurs Res 22(3):351–372

    Article  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In Schopf TJM (ed) Models in paleobiology. Freeman Cooper, San Francisco, pp. 82–115

    Google Scholar 

  • Farr J, Buede D (2003) Systems engineering and engineering management: keys to the efficient development of products and services. Eng Manag J 15(3):3–11

    Article  Google Scholar 

  • Ferrero G (1894) L’inertie mentale et la loi du moindre effort. Revue Philosophique de La France et de l’Étranger, T. 37:169–182

    Google Scholar 

  • Flood RL, Carson ER (1993) Dealing with complexity: an introduction to the theory and application of systems science. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Forrester JW (1994) System dynamics, systems thinking and soft OR. Syst Dyn Rev 10(2):245–256

    Article  Google Scholar 

  • Gaines BR (1977) Progress in general systems research. In: Klir GJ (ed) Applied general systems research: recent development and trends. Plenum Press, New York, pp 3–28

    Google Scholar 

  • Gheorghe AV, Katina PF (2014) Editorial: resiliency and engineering systems—research trends and challenges. Int J Crit Infrastruct 10(3/4):193–199

    Google Scholar 

  • Gibson JE, Scherer WT, Gibson WF (2007) How to do systems analysis. Wiley-Interscience, Hoboken

    Google Scholar 

  • Glaser BG, Strauss AL (1967) The discovery of grounded theory: strategies for qualitative research. Aldine de Gruyter, New York

    Google Scholar 

  • Gödel K (1962) On formally undecidable propositions. Basic Books, New York

    Google Scholar 

  • Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3(2):115–151

    Google Scholar 

  • Guckenheimer J, Ottino JM (2008) Foundations for complex systems research in the physical sciences and engineering. Northwestern University: National Science Foundation, Evanston

    Google Scholar 

  • Hammond D (2002) Exploring the genealogy of systems thinking. Syst Res Behav Sci 19(5):429–439. doi:10.1002/sres.499

    Article  MathSciNet  Google Scholar 

  • Hester PT, Adams KM (2014) Systemic thinking: fundamentals for understanding problems and messes. Springer, Berlin

    Google Scholar 

  • Heylighen F (1989) Self-organization, emergence and the architecture of complexity. Presented at the proceedings of the 1st European conference on system science (AFCET), pp. 23–32. Retrieved from http://cleamc11.vub.ac.be/papers/SelfArchCom.pdf

  • Heylighen F (1992) Principles of systems and cybernetics: an evolutionary perspective. In: Trappl R (ed) Cybernetics and systems. World Scientific, Singapore, pp 3–10

    Google Scholar 

  • Heylighen F, Joslyn C (1992) What is systems theory? In: Heylighen F, Joslyn C, Turchin V (eds) Cambridge dictionary of philosophy. Principia Cybernetica Web, Brussels. Retrieved from http://pespmc1.vub.ac.be/SYSTHEOR.html

  • Hitch C (1953) Sub-optimization in operations problems. Oper Res 1(3):87–99. doi:10.1287/opre.1.3.87

    Google Scholar 

  • Hitchins DK (2003) Advanced systems: thinking, engineering, and management. Artech House Publishers, Norwood

    Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4(1):1–23. doi:10.1146/annurev.es.04.110173.000245

    Article  Google Scholar 

  • Iberal A (1972) Towards a general science of viable systems. McGraw-Hill, New York

    Google Scholar 

  • Jackson MC (2003) Systems thinking: creative holism for managers. Wiley, Chichester

    Google Scholar 

  • Jordan N (1963) Allocation of functions between man and machines in automated systems. J Appl Psychol 47(3):161–165. doi:10.1037/h0043729

    Article  Google Scholar 

  • Kant I (1991). The metaphysics of morals (trans: Gregor MJ). Cambridge University Press, Cambridge

    Google Scholar 

  • Katina PF (2015) Emerging systems theory-based pathologies for governance of complex systems. Int J Syst Syst Eng 6(1/2):144–159. doi:10.1504/IJSSE.2015.068806

    Google Scholar 

  • Katina PF, Hester PT (2013) Systemic determination of infrastructure criticality. Int J Crit Infrastruct 9(3):211–225. doi:10.1504/IJCIS.2013.054980

    Article  Google Scholar 

  • Katina PF, Despotou G, Calida BY, Kholodkov T, Keating CB (2014a) Sustainability of systems of systems. Int J Syst Syst Eng 5(2):93–113. doi:10.1504/IJSSE.2014.064833

    Article  Google Scholar 

  • Katina PF, Keating CB, Jaradat RM (2014b) System requirements engineering in complex situations. Requirements Eng 19(1):45–62. doi:10.1007/s00766-012-0157-0

    Article  Google Scholar 

  • Katina PF, Pinto CA, Bradley JM, Hester PT (2014c) Interdependency-induced risk with applications to healthcare. Int J Crit Infrastruct Prot 7(1):12–26. doi:10.1016/j.ijcip.2014.01.005

    Article  Google Scholar 

  • Keating CB (2009) Emergence in system of systems. In: Jamshidi M (ed) System of systems engineering. Wiley, Hoboken, pp. 169–190

    Google Scholar 

  • Keating CB (2010) Balancing structural tensions in complex systems. Presented at the proceedings of the American society for engineering management, ASEM Press, Huntsville, pp. 1–8

    Google Scholar 

  • Keating CB (2014) Governance implications for meeting challenges in the system of systems engineering field. In: 2014 9th international conference on system of systems engineering (SOSE), IEEE, Adelaide, pp. 154–159. doi:10.1109/SYSOSE

  • Keating CB, Katina PF (2012) Prevalence of pathologies in systems of systems. Int J Syst Syst Eng 3(3/4):243–267. doi:10.1504/IJSSE.2012.052688

    Article  Google Scholar 

  • Keating CB, Jacobs D, Sousa-Poza AA, Pyne JC (2001a) Advancing sociotechnical systems theory. Proceedings of the 22nd american society for engineering management, national conference. ASEM Press, Huntsville, pp 336–341

    Google Scholar 

  • Keating CB, Kauffmann P, Dryer D (2001b) A framework for systemic analysis of complex issues. J Manag Dev 20(9):772–784

    Article  Google Scholar 

  • Keating CB, Rogers R, Unal R, Dryer D, Sousa-Poza AA, Safford R, Peterson W, Rabadi G (2003) System of systems engineering. Eng Manag J 15(3):35–44

    Article  Google Scholar 

  • Keating CB, Calida BY, Sousa-Poza AA, Kovacic SF (2010) Systems thinking. In: Merino D, Farr J (eds) The engineering management handbook. ASEM Press, Huntsville, pp 91–139

    Google Scholar 

  • Keating CB, Katina PF, Bradley JM (2014) Complex system governance: concept, challenges, and emerging research. Int J Syst Syst Eng 5(3):263–288

    Article  Google Scholar 

  • Kleene SC (2002) Mathematical logic. Dover Publications, Mineola

    MATH  Google Scholar 

  • Klein L (1994) Sociotechnical/organizational design. In: Karwowski W, Salvendy G (eds) Organization and management of advanced manufacturing. Wiley, New York, pp. 197–222

    Google Scholar 

  • Klir GJ (1972) Preview: the polyphonic GST. In: Klir GJ (ed) Trends in general systems theory. Wiley, New York, pp. 1–16

    Google Scholar 

  • Klir GJ (1991) Facets of systems science. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Korzybski A (1994) Science and sanity: an introduction to non-Aristotelian systems and general semantics. Wiley, New York

    Google Scholar 

  • Krippendorff K (1986) A dictionary of cybernetics. The American Society for Cybernetics, Norfolk. Retrieved from http://repository.upenn.edu/asc_papers/224

  • Kumar V, Abbas AK, Fausto N, Aster J (2010) Robbins and cotran: pathologic basis of disease, 8th edn. Saunders, Philadelphia

    Google Scholar 

  • Laszlo E (1996) The systems view of the world: a holistic vision for our time. Hampton Press, Cresskill

    Google Scholar 

  • Laszlo A, Krippner S (1998) Systems theories: their origins, foundations, and development. In: Jordan JS (ed) Systems theories and a priori aspects of perception. Elsevier Science, Amsterdam, pp 47–74

    Chapter  Google Scholar 

  • Leedy PD, Ormrod JE (2010) Practical research: planning and design, 9th edn. Pearson, Upper Saddle River

    Google Scholar 

  • Li J (2013) The visible hand: from struggling survival to viable sustainability. Presented at the 56th annual proceedings of ISSS, international society for the systems sciences, pp. 1–19. Retrieved from http://journals.isss.org/index.php/proceedings56th/article/view/1959

  • Long, E. (1965). A history of pathology. Annals of Internal Medicine, 63(4), 741. doi:10.7326/0003-4819-63-4-741_4

  • Luhmann N (2013) Introduction to systems theory (trans: Gilgen P). Polity, Malden

    Google Scholar 

  • Lynn LE (1980) The user’s perspective. In: Majone G, Quade ES (eds) Pitfalls of analysis, vol 8. Wiley, New York, pp. 89–115

    Google Scholar 

  • Machol RE (ed) (1965) System engineering handbook. McGraw-Hill, New York

    Google Scholar 

  • Machol RE, Miles RF (1973). The engineering of large-scale systems. In: Miles RF (ed) Systems concepts: lectures on contemporary approaches to systems. Wiley, New York, pp. 33–50

    Google Scholar 

  • Margulis L (1999) Symbiotic planet: a new look at evolution, 1st edn. Basic, New York

    Google Scholar 

  • Martin-Breen P, Anderies JM (2011) Resilience: a literature review. The Rockefeller Foundation, New York. Retrieved from http://www.rockefellerfoundation.org/blog/resilience-literature-review

  • Mason J (2002) Qualitative researching, 2 edn. Sage, London

    Google Scholar 

  • McCulloch WS (1965) Embodiments of mind. MIT Press, Cambridge

    Google Scholar 

  • Mehra J (1987) Niels Bohr’s discussions with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger: the origins of the principles of uncertainty and complementarity. Found Phys 17(5):461–506. doi:10.1007/BF01559698

    Article  MathSciNet  ADS  Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63(2):81–97. doi:10.1037/h0043158

    Article  Google Scholar 

  • Mintzberg H, Raisinghani D, Théorêt A (1976) The structure of the “unstructured” decision processes. Adm Sci Q 21(2):246–275

    Article  Google Scholar 

  • Mitroff II (1998) Smart thinking for crazy times: the art of solving the right problems. Berrett-Koehler Publishers, San Francisco

    Google Scholar 

  • Monod J (1974) On chance and necessity. In: Ayala FJ, Dobzhansky T (eds) Studies in the philosophy of biology. Macmillan Press, London, pp 357–375

    Google Scholar 

  • Murdoch DR, Murdoch D (1989) Niels Bohr’s philosophy of physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Nicolis G, Prigogine I (1975) Self-organization in non equilibrium systems. Wiley, New York

    Google Scholar 

  • Pahl G, Beitz W, Feldhusen J, Grote KH (2011) Engineering design: a systematic approach, 3rd edn. (trans: Wallace K). Springer, Berlin

    Google Scholar 

  • Pareto V (1897) Cours d’économie politique professé à l’Université de Lausanne. University of Luzerne, Luzerne

    Google Scholar 

  • Paritsis N (2000) Models of intelligence and behavior. In: Paritsis N (ed) Systems and intelligence. Lector Publishing Company, Iraklio, pp 65–80

    Google Scholar 

  • Pattee HH (1973) Hierarchy theory: the challenge of complex systems. Braziller, New York

    Google Scholar 

  • Quade ES (1980) Pitfalls in formulation and modeling. In: Majone G, Quade ES (eds) Pitfalls of analysis, vol 8. Wiley-Interscience, Chichester, pp 23–43

    Google Scholar 

  • Quade ES, Miser HJ (1985) The context, nature, and use of systems analysis. In: Misser HS, Quade ES (eds) Handbook of systems analysis: overview of uses, procedures, applications, and practice. Elsevier Science Publishing Co., Inc, New York, pp 1–32

    Google Scholar 

  • Rein M, White SH (1977) Can policy research help policy? national affairs. Washington, DC. Retrieved from http://www.nationalaffairs.com/public_interest/detail/can-policy-research-help-policy

  • Ríos JP (2012) Design and diagnosis for sustainable organizations: the viable system method. Springer, Berlin

    Google Scholar 

  • Rittel HWJ, Webber MM (1973) Dilemmas in a general theory of planning. Policy Sci 4(2):155–169. doi:10.1007/BF01405730

    Article  Google Scholar 

  • Rosenblueth A, Wiener N, Bigelow J (1943) Behavior, purpose and teleology. Philos Sci 10(1):18–24

    Article  Google Scholar 

  • Saldaña J (2013) The coding manual for qualitative researchers, 2nd edn. SAGE Publications Ltd, Thousand Oaks

    Google Scholar 

  • Schön D (1983) The reflective practitioner: how professionals think in action. Temple Smith, London

    Google Scholar 

  • Shannon CE (1948a) A mathematical theory of communication: part 1. Bell Syst Tech J 27(3):379–423

    Article  MATH  MathSciNet  Google Scholar 

  • Shannon CE (1948b) A mathematical theory of communication: part 2. Bell Syst Tech J 27(4):623–656

    Article  MathSciNet  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Champaign

    Google Scholar 

  • Simon HA (1956) Rational choice and the structure of the environment. Psychol Rev 63(2):129–138

    Article  Google Scholar 

  • Simon HA (1973) The organization of complex systems. In: Pattee HH (ed) Hierarchy theory. Braziller, New York, pp. 1–27

    Google Scholar 

  • Simon HA (1974) How big is a chunk? Science 183(4124):482–488

    Article  ADS  Google Scholar 

  • Skyttner L (1996) General systems theory: an introduction. Macmillan Press, New York

    Google Scholar 

  • Skyttner L (2005) General systems theory: problems, perspectives, practice, 2nd edn. World Scientific Publishing Co., Pte. Ltd, Singapore

    Google Scholar 

  • Smith C (1994) A recursive introduction to the theory of computation. Springer Science & Business Media, New York

    Google Scholar 

  • Smuts J (1926) Holism and evolution. Greenwood Press, New York

    Google Scholar 

  • Stacey R (1996) Complexity and creativity in organizations, 1st edn. Berrett-Koehler Publishers, San Francisco

    Google Scholar 

  • Stichweh R (2011) Systems theory. In: Badie B, Berg-Schlosser D, Morlino L (eds) International encyclopedia of political science, vol 8. SAGE, New York, pp 2579–2588

    Google Scholar 

  • Strauss AL, Corbin JM (1990) Basics of qualitative research: grounded theory procedures and techniques. Sage Publications, Newbury Park

    Google Scholar 

  • Strijbos S (2010) Systems thinking. In: Frodeman R, Klein JT, Mitcham C (eds) The oxford handbook of interdisciplinarity. Oxford University Press, New York, pp 453–470

    Google Scholar 

  • Taleb NN (2010) The black swan: the impact of the highly improbable. Random House Trade Paperbacks Edition, New York

    Google Scholar 

  • Thompson CL, Cuff JM (2012) God and nature: a theologian and a scientist conversing on the divine promise of possibility. A&C Black, New York

    Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189–208

    Article  Google Scholar 

  • Troncale L (1977) Linkage propositions between fifty principal systems concepts. In: Klir GJ (ed) Applied general systems research: recent development and trends. Plenum Press, New York, pp. 29–52

    Google Scholar 

  • Umpleby S, Heylighen F, Hu J (1990) The ASC glossary. Retrieved 25 Oct 2014, from ftp://ftp.vub.ac.be/pub/papers/Principia_Cybernetica/Nodes/Cybernetics_glossary.txt

  • van den Tweel JG, Taylor CR (2010) A brief history of pathology. Virchows Archiv 457(1):3–10. doi:10.1007/s00428-010-0934-4

    Google Scholar 

  • Vennix J (1996) Group model building: facilitating team learning using system dynamics, 1st edn. Wiley, Chichester

    Google Scholar 

  • von Bertalanffy L (1950) An outline of general system theory. Br J Philos Sci 1(2):134–165. doi:10.1093/bjps/I.2.134

    Google Scholar 

  • von Bertalanffy L (1968) General system theory: foundations, developments, applications. George Braziller, New York

    Google Scholar 

  • von Bertalanffy L (1972) The history and status of general systems theory. Acad Manag J 15(4):407–426. doi:10.2307/255139

    Google Scholar 

  • von Foerster H, Mead M, Teuber HL (1953) Cybernetics: circular causal and feedback mechanisms in biological and social systems. Josiah Macy, Jr Foundation, New York

    Google Scholar 

  • Waddington CH (1957) The strategy of genes: a discussion of some aspects of theoretical biology. Allen and Unwin, London

    Google Scholar 

  • Warfield JN (1976). Societal systems: planning, policy and complexity. Wiley-Interscience, New York

    Google Scholar 

  • Warfield JN (1995) Spreadthink: explaining ineffective groups. Syst Res 12(1):5–14. doi:10.1002/sres.3850120104

    Google Scholar 

  • Warfield JN (1999) Twenty laws of complexity: science applicable in organizations. Syst Res Behav Sci 16(1):3–40. doi:10.1002/(SICI)1099-1743(199901/02)16:1<3::AID-SRES241>3.0.CO;2-F

    Google Scholar 

  • Watt K, Craig P (1988) Surprise, ecological stability theory. In: Holling CAS (ed)The anatomy of surprise. Wiley, New York

    Google Scholar 

  • Weaver W (1948) Science and complexity. Am Sci 36(4):536–544

    Google Scholar 

  • Weinberg GM (1975) An introduction to general systems thinking. Wiley-Interscience, New York

    Google Scholar 

  • Wellington AM (1887) The economic theory of the location of railways. Wiley, New York

    Google Scholar 

  • White JW, Krippner S (eds) (1977) Future science: life energies and the physics of paranormal phenomena. Anchor Books, USA

    Google Scholar 

  • Wiener N (1948) Cybernetics: or control and communication in the animal and the machine. MIT Press, Cambridge

    Google Scholar 

  • Wildavsky A (1988) Searching for safety. Transaction Publishers, New Brunswick

    Google Scholar 

  • Zipf GK (1949) Human behavior and the principle of least effort, vol xi. Addison-Wesley Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polinpapilinho F. Katina .

Editor information

Editors and Affiliations

Glossary

Ambiguity

increasing lack of clarity and situational understanding

Complexity

large numbers of richly interdependent and dynamically interacting systems with behavior difficult to predict

Emergence

inability to deduce behavior, structure, or performance from constituent elements

Interdependence

mutual influence among complex systems through which the state of a system influences and is influenced by, the state of interconnected systems

Management cybernetics

the science of effective organization, places emphasis on communication and control of systems

Metasystem

a governing structure with a set of interrelated higher level functions; it provides for integration of autonomous complex systems to achieve functionality (or goals and missions) beyond constituent systems

Problem formulation

arguably the most important stage of systems-based methodologies intended for discovery of circumstances, trends, patterns, and issues acting to limit complex system performance

Sustainability

evolving for future existence and thus is the capacity to endure over time

Systems pathology

a circumstance, factor, or pattern that acts to limit system performance, or lessen systems viability, such that the likelihood of a system achieving performance expectations is reduced

Systems theory

a unified group of specific propositions which are brought together to aid in understanding systems, thereby invoking improved explanatory power and interpretation with major implications for systems practitioners; provides a set of universals that can define function, performance, and behavior of all systems, natural or manmade

Systems theory-based pathology (STBP)

a pathology (see systems pathology) stemming from deviation in applications of systems theory and expressed as the lack of use of fundamental concepts of systems theory (i.e., laws, principles, and theorems) or direct violation of fundamental concepts of systems theory (e.g., ignoring a systems theoretic law)

Uncertainty

incompleteness in understanding, predicting, or controlling

Viability

continued present existence

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Katina, P.F. (2016). Systems Theory as a Foundation for Discovery of Pathologies for Complex System Problem Formulation. In: Masys, A. (eds) Applications of Systems Thinking and Soft Operations Research in Managing Complexity. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-21106-0_11

Download citation

Publish with us

Policies and ethics