Targeting the PI3 K-mTOR Signaling Circuitry in HPV-Associated Oral Malignancies: Novel Precision Molecular Therapies

  • Colleen L. Doçi
  • J. Silvio GutkindEmail author


HPV is the most common sexually transmitted infection and it is predicted that up to 80 % of Americans will have HPV infections in their lifetime (Centers for Disease Control and Prevention 2015). The etiology of cervical cancer has long been linked with persistent HPV infection, but the correlation between HPV and other cancer types, including head and neck squamous cell carcinomas (HNSCC), oropharyngeal carcinomas (OPCs), anal carcinomas, and cancers of the genital tract is emerging (Forman et al. 2012). Compared to alcohol- and tobacco-related HNSCC, HPV-associated head and neck cancer involves activation of specific molecular mechanisms, making HPV(+) HNSCCs diagnostically and therapeutically distinct. Here, we will review the current understanding of the molecular mechanisms in HPV(+) HNSCC with emphasis on the signaling events that drive the growth of HPV-associated HNSCC and the emerging opportunities for the development of novel precision molecular-targeted therapies for this disease.


Oral Cancer mTOR Pathway mTORC1 Complex mTOR Pathway Activation Oral Cancer Risk Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in the author’(s) laboratory is supported by the Intramural Research Program of the NIH, NIDCR.


  1. Amornphimoltham P, Patel V, Sodhi A, Nikitakis NG, Sauk JJ, Sausville EA, Molinolo AA, Gutkind JS (2005) Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck. Cancer Res 65(21):9953–9961. doi: 10.1158/0008-5472.CAN-05-0921 PubMedCrossRefGoogle Scholar
  2. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, Westra WH, Chung CH, Jordan RC, Lu C, Kim H, Axelrod R, Silverman CC, Redmond KP, Gillison ML (2010) Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363(1):24–35. doi: 10.1056/NEJMoa0912217 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Barbosa MS, Lowy DR, Schiller JT (1989) Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. J Virol 63(3):1404–1407PubMedCentralPubMedGoogle Scholar
  4. Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P, Tanti JF, Giorgetti-Peraldi S, Bost F (2011) Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 71(13):4366–4372. doi: 10.1158/0008-5472.CAN-10-1769 PubMedCrossRefGoogle Scholar
  5. Berezutskaya E, Bagchi S (1997) The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J Biol Chem 272(48):30135–30140PubMedCrossRefGoogle Scholar
  6. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348. doi: 10.1038/nrc1362 PubMedCrossRefGoogle Scholar
  7. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352PubMedCrossRefGoogle Scholar
  8. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V (2009) A review of human carcinogens–part B: biological agents. Lancet Oncol 10(4):321–322PubMedCrossRefGoogle Scholar
  9. Boyer SN, Wazer DE, Band V (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56(20):4620–4624PubMedGoogle Scholar
  10. Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1999) The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J 18(9):2449–2458. doi: 10.1093/emboj/18.9.2449 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. doi: 10.1126/science.296.5573.1655 PubMedCrossRefGoogle Scholar
  12. Capone RB, Pai SI, Koch WM, Gillison ML, Danish HN, Westra WH, Daniel R, Shah KV, Sidransky D (2000) Detection and quantitation of human papillomavirus (HPV) DNA in the sera of patients with HPV-associated head and neck squamous cell carcinoma. Clin Cancer Res 6(11):4171–4175PubMedGoogle Scholar
  13. Centers for Disease Control and Prevention Epidemiology and Prevention of Vaccine-Preventable Diseases (2015). Department of Health & Human Services, Public Health Service.
  14. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML (2008) Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol 26(4):612–619. doi: 10.1200/JCO.2007.14.1713 PubMedCrossRefGoogle Scholar
  15. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, Jiang B, Goodman MT, Sibug-Saber M, Cozen W, Liu L, Lynch CF, Wentzensen N, Jordan RC, Altekruse S, Anderson WF, Rosenberg PS, Gillison ML (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29(32):4294–4301. doi: 10.1200/JCO.2011.36.4596 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chaturvedi AK, Madeleine MM, Biggar RJ, Engels EA (2009) Risk of human papillomavirus-associated cancers among persons with AIDS. J Natl Cancer Inst 101(16):1120–1130. doi: 10.1093/jnci/djp205 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chen TM, Pecoraro G, Defendi V (1993) Genetic analysis of in vitro progression of human papillomavirus-transfected human cervical cells. Cancer Res 53(5):1167–1171PubMedGoogle Scholar
  18. Cheng SH, Chu FY, Wang CC, Hsueh YM (2014) Screening and risk factors for anal cancer precursors in men infected with HIV in Taiwan. J Med Virol 86(2):193–201. doi: 10.1002/jmv.23825 PubMedCrossRefGoogle Scholar
  19. Chung CH, Guthrie VB, Masica DL, Tokheim C, Kang H, Richmon J, Agrawal N, Fakhry C, Quon H, Subramaniam RM, Zuo Z, Seiwert T, Chalmers ZR, Frampton GM, Ali SM, Yelensky R, Stephens PJ, Miller VA, Karchin R, Bishop JA (2015) Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann Oncol. doi: 10.1093/annonc/mdv109 Google Scholar
  20. Clifford GM, Smith JS, Plummer M, Munoz N, Franceschi S (2003) Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88(1):63–73. doi: 10.1038/sj.bjc.6600688 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S, Hsueh T, Chen Y, Wang W, Youngkin D, Liau L, Martin N, Becker D, Bergsneider M, Lai A, Green R, Oglesby T, Koleto M, Trent J, Horvath S, Mischel PS, Mellinghoff IK, Sawyers CL (2008) Antitumor activity of rapamycin in a phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5(1):e8. doi: 10.1371/journal.pmed.0050008 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Coqueret O, Gascan H (2000) Functional interaction of STAT3 transcription factor with the cell cycle inhibitor p21WAF1/CIP1/SDI1. J Biol Chem 275(25):18794–18800. doi: 10.1074/jbc.M001601200 PubMedCrossRefGoogle Scholar
  23. D’Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, Westra WH, Gillison ML (2007) Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 356(19):1944–1956. doi: 10.1056/NEJMoa065497 PubMedCrossRefGoogle Scholar
  24. Datto MB, Yu Y, Wang XF (1995) Functional analysis of the transforming growth factor beta responsive elements in the WAF1/Cip1/p21 promoter. J Biol Chem 270(48):28623–28628PubMedCrossRefGoogle Scholar
  25. Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP (2005) p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev 19(12):1485–1495. doi: 10.1101/gad.341405 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Dienstmann R, Rodon J, Serra V, Tabernero J (2014) Picking the point of inhibition: a comparative review of PI3 K/AKT/mTOR pathway inhibitors. Mol Cancer Ther 13(5):1021–1031. doi: 10.1158/1535-7163.MCT-13-0639 PubMedCrossRefGoogle Scholar
  27. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67(22):10804–10812. doi: 10.1158/0008-5472.CAN-07-2310 PubMedCrossRefGoogle Scholar
  28. Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893):934–937PubMedCrossRefGoogle Scholar
  29. Engelman JA (2009) Targeting PI3 K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550–562. doi: 10.1038/nrc2664 PubMedCrossRefGoogle Scholar
  30. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H, Forastiere A, Gillison ML (2008) Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 100(4):261–269. doi: 10.1093/jnci/djn011 PubMedCrossRefGoogle Scholar
  31. Faubert B, Vincent EE, Poffenberger MC, Jones RG (2015) The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett 356(2 Pt A):165–170. doi: 10.1016/j.canlet.2014.01.018
  32. Flaherty A, Kim T, Giuliano A, Magliocco A, Hakky TS, Pagliaro LC, Spiess PE (2014) Implications for human papillomavirus in penile cancer. Urol Oncol 32(1):53 e51–58. doi: 10.1016/j.urolonc.2013.08.010
  33. Forastiere A, Koch W, Trotti A, Sidransky D (2001) Head and neck cancer. N Engl J Med 345(26):1890–1900. doi: 10.1056/NEJMra001375 PubMedCrossRefGoogle Scholar
  34. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, Vignat J, Ferlay J, Bray F, Plummer M, Franceschi S (2012) Global burden of human papillomavirus and related diseases. Vaccine 30(Suppl 5):F12–F23. doi: 10.1016/j.vaccine.2012.07.055 PubMedCrossRefGoogle Scholar
  35. Fruman DA, Rommel C (2014) PI3 K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13(2):140–156. doi: 10.1038/nrd4204 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA (1997) Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 11(16):2090–2100PubMedCentralPubMedCrossRefGoogle Scholar
  37. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, Zahurak ML, Daniel RW, Viglione M, Symer DE, Shah KV, Sidransky D (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 92(9):709–720PubMedCrossRefGoogle Scholar
  38. Gillison ML, Shah KV (2001) Human papillomavirus-associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol 13(3):183–188PubMedCrossRefGoogle Scholar
  39. Gonzalez SL, Stremlau M, He X, Basile JR, Munger K (2001) Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J Virol 75(16):7583–7591. doi: 10.1128/JVI.75.16.7583-7591.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945. doi: 10.1101/gad.1212704 PubMedCrossRefGoogle Scholar
  41. Herrero R, Gonzalez P, Markowitz LE (2015) Present status of human papillomavirus vaccine development and implementation. Lancet Oncol 16(5):e206–e216. doi: 10.1016/S1470-2045(14)70481-4 PubMedCrossRefGoogle Scholar
  42. Herrero R, Quint W, Hildesheim A, Gonzalez P, Struijk L, Katki HA, Porras C, Schiffman M, Rodriguez AC, Solomon D, Jimenez S, Schiller JT, Lowy DR, van Doorn LJ, Wacholder S, Kreimer AR (2013) Reduced prevalence of oral human papillomavirus (HPV) 4 years after bivalent HPV vaccination in a randomized clinical trial in Costa Rica. PLoS One 8(7):e68329. doi: 10.1371/journal.pone.0068329 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Hidalgo M, Buckner JC, Erlichman C, Pollack MS, Boni JP, Dukart G, Marshall B, Speicher L, Moore L, Rowinsky EK (2006) A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res 12(19):5755–5763. doi: 10.1158/1078-0432.CCR-06-0118 PubMedCrossRefGoogle Scholar
  44. Huh K, Zhou X, Hayakawa H, Cho JY, Libermann TA, Jin J, Harper JW, Munger K (2007) Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol 81(18):9737–9747. doi: 10.1128/JVI.00881-07 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Hwang SG, Lee D, Kim J, Seo T, Choe J (2002) Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem 277(4):2923–2930. doi: 10.1074/jbc.M109113200 PubMedCrossRefGoogle Scholar
  46. Iglesias-Bartolome R, Martin D, Gutkind JS (2013) Exploiting the head and neck cancer oncogenome: widespread PI3 K-mTOR pathway alterations and novel molecular targets. Cancer Discov 3(7):722–725. doi: 10.1158/2159-8290.CD-13-0239 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Jemal A, Simard EP, Dorell C, Noone AM, Markowitz LE, Kohler B, Eheman C, Saraiya M, Bandi P, Saslow D, Cronin KA, Watson M, Schiffman M, Henley SJ, Schymura MJ, Anderson RN, Yankey D, Edwards BK (2013) Annual Report to the Nation on the Status of Cancer, 1975-2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels. J Natl Cancer Inst 105(3):175–201. doi: 10.1093/jnci/djs491 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Jones DL, Thompson DA, Munger K (1997) Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 239(1):97–107. doi: 10.1006/viro.1997.8851 PubMedCrossRefGoogle Scholar
  49. Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11(5):390–401. doi: 10.1016/j.cmet.2010.03.014 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kingswood JC, Jozwiak S, Belousova ED, Frost MD, Kuperman RA, Bebin EM, Korf BR, Flamini JR, Kohrman MH, Sparagana SP, Wu JY, Brechenmacher T, Stein K, Berkowitz N, Bissler JJ, Franz DN (2014) The effect of everolimus on renal angiomyolipoma in patients with tuberous sclerosis complex being treated for subependymal giant cell astrocytoma: subgroup results from the randomized, placebo-controlled, phase 3 trial EXIST-1. Nephrol Dial Transplant 29(6):1203–1210. doi: 10.1093/ndt/gfu013 PubMedCrossRefGoogle Scholar
  51. Kitaura H, Shinshi M, Uchikoshi Y, Ono T, Iguchi-Ariga SM, Ariga H (2000) Reciprocal regulation via protein-protein interaction between c-Myc and p21(cip1/waf1/sdi1) in DNA replication and transcription. J Biol Chem 275(14):10477–10483PubMedCrossRefGoogle Scholar
  52. Kurdgelashvili G, Dores GM, Srour SA, Chaturvedi AK, Huycke MM, Devesa SS (2013) Incidence of potentially human papillomavirus-related neoplasms in the United States, 1978 to 2007. Cancer 119(12):2291–2299. doi: 10.1002/cncr.27989 PubMedCrossRefGoogle Scholar
  53. Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123(3):980–989. doi: 10.1172/JCI64099 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi: 10.1016/j.cell.2012.03.017 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, Overgaard J (2009) Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J Clin Oncol 27(12):1992–1998. doi: 10.1200/JCO.2008.20.2853 PubMedCrossRefGoogle Scholar
  56. Lechner MS, Laimins LA (1994) Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol 68(7):4262–4273PubMedCentralPubMedGoogle Scholar
  57. Li X, Coffino P (1996) High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J Virol 70(7):4509–4516PubMedCentralPubMedGoogle Scholar
  58. Licitra L, Perrone F, Bossi P, Suardi S, Mariani L, Artusi R, Oggionni M, Rossini C, Cantu G, Squadrelli M, Quattrone P, Locati LD, Bergamini C, Olmi P, Pierotti MA, Pilotti S (2006) High-risk human papillomavirus affects prognosis in patients with surgically treated oropharyngeal squamous cell carcinoma. J Clin Oncol 24(36):5630–5636. doi: 10.1200/JCO.2005.04.6136 PubMedCrossRefGoogle Scholar
  59. Lindquist D, Romanitan M, Hammarstedt L, Nasman A, Dahlstrand H, Lindholm J, Onelov L, Ramqvist T, Ye W, Munck-Wikland E, Dalianis T (2007) Human papillomavirus is a favourable prognostic factor in tonsillar cancer and its oncogenic role is supported by the expression of E6 and E7. Mol Oncol 1(3):350–355. doi: 10.1016/j.molonc.2007.08.005 PubMedCrossRefGoogle Scholar
  60. Longworth MS, Wilson R, Laimins LA (2005) HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J 24(10):1821–1830. doi: 10.1038/sj.emboj.7600651 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Lowy DR, Herrero R, Hildesheim A (2015) Primary endpoints for future prophylactic human papillomavirus vaccine trials: towards infection and immunobridging. Lancet Oncol 16(5):e226–e233. doi: 10.1016/S1470-2045(15)70075-6 PubMedCrossRefGoogle Scholar
  62. Lu Z, Hu X, Li Y, Zheng L, Zhou Y, Jiang H, Ning T, Basang Z, Zhang C, Ke Y (2004) Human papillomavirus 16 E6 oncoprotein interferences with insulin signaling pathway by binding to tuberin. J Biol Chem 279(34):35664–35670. doi: 10.1074/jbc.M403385200 PubMedCrossRefGoogle Scholar
  63. Lui VW, Hedberg ML, Li H, Vangara BS, Pendleton K, Zeng Y, Lu Y, Zhang Q, Du Y, Gilbert BR, Freilino M, Sauerwein S, Peyser ND, Xiao D, Diergaarde B, Wang L, Chiosea S, Seethala R, Johnson JT, Kim S, Duvvuri U, Ferris RL, Romkes M, Nukui T, Kwok-Shing Ng P, Garraway LA, Hammerman PS, Mills GB, Grandis JR (2013) Frequent mutation of the PI3 K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov 3(7):761–769. doi: 10.1158/2159-8290.CD-13-0103 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Madera D, Vitale-Cross L, Martin D, Schneider A, Molinolo AA, Gangane N, Carey TE, McHugh JB, Komarck CM, Walline HM, William WN Jr, Seethala RR, Ferris RL, Gutkind JS (2015) Prevention of tumor growth driven by PIK3CA and HPV oncogenes by targeting mTOR signaling with metformin in oral squamous carcinomas expressing OCT3. Cancer Prev Res (Phila) 8(3):197–207. doi: 10.1158/1940-6207.CAPR-14-0348 CrossRefGoogle Scholar
  65. Manning BD, Cantley LC (2003) Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 28(11):573–576. doi: 10.1016/j.tibs.2003.09.003 PubMedCrossRefGoogle Scholar
  66. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1):151–162PubMedCrossRefGoogle Scholar
  67. Martin D, Abba MC, Molinolo AA, Vitale-Cross L, Wang Z, Zaida M, Delic NC, Samuels Y, Lyons JG, Gutkind JS (2014) The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies. Oncotarget 5(19):8906–8923PubMedCentralPubMedGoogle Scholar
  68. Missero C, Calautti E, Eckner R, Chin J, Tsai LH, Livingston DM, Dotto GP (1995) Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc Natl Acad Sci USA 92(12):5451–5455PubMedCentralPubMedCrossRefGoogle Scholar
  69. Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS (2009) Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol 45(4–5):324–334. doi: 10.1016/j.oraloncology.2008.07.011 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Molinolo AA, Hewitt SM, Amornphimoltham P, Keelawat S, Rangdaeng S, Meneses Garcia A, Raimondi AR, Jufe R, Itoiz M, Gao Y, Saranath D, Kaleebi GS, Yoo GH, Leak L, Myers EM, Shintani S, Wong D, Massey HD, Yeudall WA, Lonardo F, Ensley J, Gutkind JS (2007) Dissecting the Akt/mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative. Clin Cancer Res 13(17):4964–4973. doi: 10.1158/1078-0432.CCR-07-1041 PubMedCrossRefGoogle Scholar
  71. Molinolo AA, Marsh C, El Dinali M, Gangane N, Jennison K, Hewitt S, Patel V, Seiwert TY, Gutkind JS (2012) mTOR as a molecular target in HPV-associated oral and cervical squamous carcinomas. Clin Cancer Res 18(9):2558–2568. doi: 10.1158/1078-0432.CCR-11-2824 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Montgomery KD, Tedford KL, McDougall JK (1995) Genetic instability of chromosome 3 in HPV-immortalized and tumorigenic human keratinocytes. Genes Chromosom Cancer 14(2):97–105PubMedCrossRefGoogle Scholar
  73. Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM (1989) Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 8(13):4099–4105PubMedCentralPubMedGoogle Scholar
  74. National Institute of Dental and Craniofacial Research (2000) A pilot trial targeting mTOR as a novel mechanism-based Neoadjuvant therapy for head and neck cancer. In: [Internet]. Accessed 2000—[cited 2015 May 07].
  75. Nguyen SA, Walker D, Gillespie MB, Gutkind JS, Day TA (2012) mTOR inhibitors and its role in the treatment of head and neck squamous cell carcinoma. Curr Treat Options Oncol 13(1):71–81. doi: 10.1007/s11864-011-0180-2 PubMedCrossRefGoogle Scholar
  76. Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M (2011) Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS One 6(7):e22163. doi: 10.1371/journal.pone.0022163 PubMedCentralPubMedCrossRefGoogle Scholar
  77. Oh KJ, Kalinina A, Park NH, Bagchi S (2006) Deregulation of eIF4E: 4E-BP1 in differentiated human papillomavirus-containing cells leads to high levels of expression of the E7 oncoprotein. J Virol 80(14):7079–7088. doi: 10.1128/JVI.02380-05 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10(4):431–442. doi: 10.1038/sj.cdd.4401183 PubMedCrossRefGoogle Scholar
  79. Palefsky JM, Holly EA, Efirdc JT, Da Costa M, Jay N, Berry JM, Darragh TM (2005) Anal intraepithelial neoplasia in the highly active antiretroviral therapy era among HIV-positive men who have sex with men. Aids 19(13):1407–1414PubMedCrossRefGoogle Scholar
  80. Patel P, Hanson DL, Sullivan PS, Novak RM, Moorman AC, Tong TC, Holmberg SD, Brooks JT (2008) Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med 148(10):728–736PubMedCrossRefGoogle Scholar
  81. Peng ZF, Yang L, Wang TT, Han P, Liu ZH, Wei Q (2014) Efficacy and safety of sirolimus for renal angiomyolipoma in patients with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis: a systematic review. J Urol 192(5):1424–1430. doi: 10.1016/j.juro.2014.04.096 PubMedCrossRefGoogle Scholar
  82. Pickering CR, Zhang J, Yoo SY, Bengtsson L, Moorthy S, Neskey DM, Zhao M, Ortega Alves MV, Chang K, Drummond J, Cortez E, Xie TX, Zhang D, Chung W, Issa JP, Zweidler-McKay PA, Wu X, El-Naggar AK, Weinstein JN, Wang J, Muzny DM, Gibbs RA, Wheeler DA, Myers JN, Frederick MJ (2013) Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov 3(7):770–781. doi: 10.1158/2159-8290.CD-12-0537 PubMedCrossRefGoogle Scholar
  83. Polanska H, Raudenska M, Gumulec J, Sztalmachova M, Adam V, Kizek R, Masarik M (2014) Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol 50(3):168–177. doi: 10.1016/j.oraloncology.2013.12.008 PubMedCrossRefGoogle Scholar
  84. Pollak M (2012a) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12(3):159–169. doi: 10.1038/nrc3215 PubMedGoogle Scholar
  85. Pollak M (2013) Metformin’s potential in oncology. Clin Adv Hematol Oncol 11(9):594–595PubMedGoogle Scholar
  86. Pollak MN (2012b) Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov 2(9):778–790. doi: 10.1158/2159-8290.CD-12-0263 PubMedCrossRefGoogle Scholar
  87. Raymond E, Alexandre J, Faivre S, Vera K, Materman E, Boni J, Leister C, Korth-Bradley J, Hanauske A, Armand JP (2004) Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 22(12):2336–2347. doi: 10.1200/JCO.2004.08.116 PubMedCrossRefGoogle Scholar
  88. Ryerson AB, Peters ES, Coughlin SS, Chen VW, Gillison ML, Reichman ME, Wu X, Chaturvedi AK, Kawaoka K (2008) Burden of potentially human papillomavirus-associated cancers of the oropharynx and oral cavity in the US, 1998–2003. Cancer 113(10 Suppl):2901–2909. doi: 10.1002/cncr.23745 PubMedCrossRefGoogle Scholar
  89. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168. doi: 10.1016/j.molcel.2006.03.029 PubMedCrossRefGoogle Scholar
  90. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75(3):495–505PubMedCrossRefGoogle Scholar
  91. Settle K, Posner MR, Schumaker LM, Tan M, Suntharalingam M, Goloubeva O, Strome SE, Haddad RI, Patel SS, Cambell EV 3rd, Sarlis N, Lorch J, Cullen KJ (2009) Racial survival disparity in head and neck cancer results from low prevalence of human papillomavirus infection in black oropharyngeal cancer patients. Cancer Prev Res (Phila) 2(9):776–781. doi: 10.1158/1940-6207.CAPR-09-0149 CrossRefGoogle Scholar
  92. Sewell A, Brown B, Biktasova A, Mills GB, Lu Y, Tyson DR, Issaeva N, Yarbrough WG (2014) Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer. Clin Cancer Res 20(9):2300–2311. doi: 10.1158/1078-0432.CCR-13-2585 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Shiboski CH, Schmidt BL, Jordan RC (2005) Tongue and tonsil carcinoma: increasing trends in the U.S. population ages 20–44 years. Cancer 103(9):1843–1849. doi: 10.1002/cncr.20998 PubMedCrossRefGoogle Scholar
  94. Spangle JM, Munger K (2010) The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol 84(18):9398–9407. doi: 10.1128/JVI.00974-10 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Stewart D, Ghosh A, Matlashewski G (2005) Involvement of nuclear export in human papillomavirus type 18 E6-mediated ubiquitination and degradation of p53. J Virol 79(14):8773–8783. doi: 10.1128/JVI.79.14.8773-8783.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  96. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, Shefler E, Ramos AH, Stojanov P, Carter SL, Voet D, Cortes ML, Auclair D, Berger MF, Saksena G, Guiducci C, Onofrio RC, Parkin M, Romkes M, Weissfeld JL, Seethala RR, Wang L, Rangel-Escareno C, Fernandez-Lopez JC, Hidalgo-Miranda A, Melendez-Zajgla J, Winckler W, Ardlie K, Gabriel SB, Meyerson M, Lander ES, Getz G, Golub TR, Garraway LA, Grandis JR (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333(6046):1157–1160. doi: 10.1126/science.1208130 PubMedCentralPubMedCrossRefGoogle Scholar
  97. Tamalet C, Obry-Roguet V, Ressiot E, Bregigeon S, Del Grande J, Poizot-Martin I (2014) Distribution of human papillomavirus genotypes, assessment of HPV 16 and 18 viral load and anal related lesions in HIV positive patients: a cross-sectional analysis. J Med Virol 86(3):419–425. doi: 10.1002/jmv.23831 PubMedCrossRefGoogle Scholar
  98. Thomas M, Massimi P, Jenkins J, Banks L (1995) HPV-18 E6 mediated inhibition of p53 DNA binding activity is independent of E6 induced degradation. Oncogene 10(2):261–268PubMedGoogle Scholar
  99. Tseng CJ, Pao CC, Lin JD, Soong YK, Hong JH, Hsueh S (1999) Detection of human papillomavirus types 16 and 18 mRNA in peripheral blood of advanced cervical cancer patients and its association with prognosis. J Clin Oncol 17(5):1391–1396PubMedGoogle Scholar
  100. Veldman T, Horikawa I, Barrett JC, Schlegel R (2001) Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 75(9):4467–4472. doi: 10.1128/JVI.75.9.4467-4472.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  101. Vitale-Cross L, Molinolo AA, Martin D, Younis RH, Maruyama T, Patel V, Chen W, Schneider A, Gutkind JS (2012) Metformin prevents the development of oral squamous cell carcinomas from carcinogen-induced premalignant lesions. Cancer Prev Res (Phila) 5(4):562–573. doi: 10.1158/1940-6207.CAPR-11-0502 CrossRefGoogle Scholar
  102. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120. doi: 10.1038/ng.2764 PubMedCentralPubMedCrossRefGoogle Scholar
  103. Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248(4951):76–79PubMedCrossRefGoogle Scholar
  104. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P (1996) Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13(11):2323–2330PubMedGoogle Scholar
  105. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi: 10.1038/nrm3025 PubMedCentralPubMedCrossRefGoogle Scholar
  106. zur Hausen H (2009) Papillomaviruses in the causation of human cancers—a brief historical account. Virology 384(2):260–265. doi: 10.1016/j.virol.2008.11.046 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Oral and Pharyngeal Cancer BranchNational Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaUSA

Personalised recommendations