Papillomavirus Replication
- 1 Mentions
- 772 Downloads
Abstract
Papillomaviruses (PVs) are small, double-stranded, circular DNA viruses that infect mammals, birds, and reptiles. An understanding of these virus replicative cycles is largely derived from studies of bovine papillomavirus (BPV) and human papillomavirus (HPV). With an 8-kilobase (kb) genome encoding only eight major genes, PVs have a limited set of tools with which they can establish an infection. Hence, they depend on host factors to carry out their life cycle. In their preferred niche, keratinocytes, the replicative program of extensively studied HPV types is tightly linked to that of the host. These viruses are preferentially internalized in the basal layer, persist in superficially migrating cells, and manipulate cell cycle and differentiation to facilitate their own propagation. Although much progress has been achieved in understanding PV biology, the precise mechanisms governing the viral replicative cycle, as well as the alterations in the host that lead to cancer, remain incompletely understood. This chapter reviews basic PV biology, then examines in detail the host replication machinery, the different modes and stages of viral replication, and the molecular aspects of the intricate virus–host interplay which occurs during replication.
Keywords
Human papillomavirus Viral life cycle E1 E2 Virus–host interactions Replication Maintenance Amplification Genomic instability CancerReferences
- Abbate EA, Berger JM, Botchan MR (2004) The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. Genes Dev 18:1981–1996PubMedCentralPubMedGoogle Scholar
- Abbate EA, Voitenleitner C, Botchan MR (2006) Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association. Mol Cell 24:877–889PubMedGoogle Scholar
- Alabert C, Groth A (2012) Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol 13:153–167PubMedGoogle Scholar
- Alderborn A, Burnett S (1994) Regulation of DNA synthesis in division-arrested mouse C127 cells permissive for bovine papillomavirus DNA amplification. J Virol 68:4349–4357PubMedCentralPubMedGoogle Scholar
- Amirian ES, Marquez-Do D, Adler-Storthz K, Follen M, Scheurer ME (2012) The role of polymorphisms in DNA repair genes and HPV 18 integration status in cervical dysplasia. Cancer Epidemiol Biomark Prev 21:1–9Google Scholar
- Anacker DC, Gautam D, Gillespie KA, Chappell WH, Moody CA (2014) Productive replication of human papillomavirus 31 requires DNA repair factor nbs1. J Virol 88:8528–8544PubMedCentralPubMedGoogle Scholar
- Androphy EJ, Lowy DR, Schiller JT (1987) Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA. Nature 325:70–73PubMedGoogle Scholar
- Balakrishnan L, Bambara RA (2011) Eukaryotic lagging strand DNA replication employs a multi-pathway mechanism that protects genome integrity. J Biol Chem 286:6865–6870PubMedCentralPubMedGoogle Scholar
- Barsoum J, Prakash SS, Han P, Androphy EJ (1992) Mechanism of action of the papillomavirus E2 repressor: repression in the absence of DNA binding. J Virol 66:3941–3945PubMedCentralPubMedGoogle Scholar
- Bauknecht T, Angel P, Royer HD, Zur Hausen H (1992) Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor YY1. EMBO J 11:4607–4617PubMedCentralPubMedGoogle Scholar
- Blow JJ, Ge XQ, Jackson DA (2011) How dormant origins promote complete genome replication. Trends Biochem Sci 36:405–414PubMedCentralPubMedGoogle Scholar
- Botchan M, Berg L, Reynolds J, Lusky M (1986) The bovine papillomavirus replicon. Ciba Found Symp 120:53–67PubMedGoogle Scholar
- Brown C, Kowalczyk AM, Taylor ER, Morgan IM, Gaston K (2008) P53 represses human papillomavirus type 16 DNA replication via the viral E2 protein. Virol J 5:5PubMedCentralPubMedGoogle Scholar
- Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark JM, Nussenzweig A (2010) 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–254PubMedCentralPubMedGoogle Scholar
- Burnett S, Zabielski J, Moreno-Lopez J, Pettersson U (1989) Evidence for multiple vegetative DNA replication origins and alternative replication mechanisms of bovine papillomavirus type 1. J Mol Biol 206:239–244PubMedGoogle Scholar
- Carson A, Khan SA (2006) Characterization of transcription factor binding to human papillomavirus type 16 DNA during cellular differentiation. J Virol 80:4356–4362PubMedCentralPubMedGoogle Scholar
- Cerqueira C, Liu Y, Kuhling L, Chai W, Hafezi W, van Kuppevelt TH, Kuhn JE, Feizi T, Schelhaas M (2013) Heparin increases the infectivity of human papillomavirus type 16 independent of cell surface proteoglycans and induces L1 epitope exposure. Cell Microbiol 15:1818–1836PubMedGoogle Scholar
- Chang SW, Tsao YP, Lin CY, Chen SL (2011) NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol 85:6750–6763PubMedCentralPubMedGoogle Scholar
- Chaudhuri B, Xu H, Todorov I, Dutta A, Yates JL (2001) Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A 98:10085–10089PubMedCentralPubMedGoogle Scholar
- Chen B, Simpson DA, Zhou Y, Mitra A, Mitchell DL, Cordeiro-Stone M, Kaufmann WK (2009) Human papilloma virus type16 E6 deregulates CHK1 and sensitizes human fibroblasts to environmental carcinogens independently of its effect on p53. Cell Cycle 8:1775–1787PubMedCentralPubMedGoogle Scholar
- Chen G, Stenlund A (2000) Two patches of amino acids on the E2 DNA binding domain define the surface for interaction with E1. J Virol 74:1506–1512PubMedCentralPubMedGoogle Scholar
- Cheng S, Schmidt-Grimminger DC, Murant T, Broker TR, Chow LT (1995) Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev 9:2335–2349PubMedGoogle Scholar
- Chesters PM, McCance DJ (1985) Human papillomavirus type 16 recombinant DNA is maintained as an autonomously replicating episome in monkey kidney cells. J Gen Virol 66(Pt 3):615–620PubMedGoogle Scholar
- Chiang CM, Ustav M, Stenlund A, Ho TF, Broker TR, Chow LT (1992) Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc Natl Acad Sci U S A 89:5799–5803PubMedCentralPubMedGoogle Scholar
- Choo KB, Cheung WF, Liew LN, Lee HH, Han SH (1989) Presence of catenated human papillomavirus type 16 episomes in a cervical carcinoma cell line. J Virol 63:782–789PubMedCentralPubMedGoogle Scholar
- Daley JM, Sung P (2014) 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol 34:1380–1388PubMedCentralPubMedGoogle Scholar
- de Villiers EM, Fauquet C, Broker TR, Bernard HU, Zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27PubMedGoogle Scholar
- Deng W, Lin BY, Jin G, Wheeler CG, Ma T, Harper JW, Broker TR, Chow LT (2004) Cyclin/CDK regulates the nucleocytoplasmic localization of the human papillomavirus E1 DNA helicase. J Virol 78:13954–13965PubMedCentralPubMedGoogle Scholar
- Donaldson MM, Mackintosh LJ, Bodily JM, Dornan ES, Laimins LA, Morgan IM (2012) An interaction between human papillomavirus 16 E2 and TopBP1 is required for optimum viral DNA replication and episomal genome establishment. J Virol 86:12806–12815PubMedCentralPubMedGoogle Scholar
- Durst M, Glitz D, Schneider A, Zur Hausen H (1992) Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 189:132–140PubMedGoogle Scholar
- Edwards TG, Koeller KJ, Slomczynska U, Fok K, Helmus M, Bashkin JK, Fisher C (2011) HPV episome levels are potently decreased by pyrrole-imidazole polyamides. Antiviral Res 91:177–186PubMedCentralPubMedGoogle Scholar
- Egawa N, Nakahara T, Ohno S, Narisawa-Saito M, Yugawa T, Fujita M, Yamato K, Natori Y, Kiyono T (2012) The E1 protein of human papillomavirus type 16 is dispensable for maintenance replication of the viral genome. J Virol 86:3276–3283PubMedCentralPubMedGoogle Scholar
- Fan X, Liu Y, Heilman SA, Chen JJ (2013) Human papillomavirus E7 induces rereplication in response to DNA damage. J Virol 87:1200–1210PubMedCentralPubMedGoogle Scholar
- Filippova M, Evans W, Aragon R, Filippov V, Williams VM, Hong L, Reeves ME, Duerksen-Hughes P (2014) The small splice variant of HPV16 E6, E6, reduces tumor formation in cervical carcinoma xenografts. Virology 450–451:153–164PubMedGoogle Scholar
- Flores ER, Lambert PF (1997) Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle. J Virol 71:7167–7179PubMedCentralPubMedGoogle Scholar
- Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, Bryson BD, Rameseder J, Lee MJ, Blake EJ, Fydrych A, Ho R, Greenberger BA, Chen GC, Maffa A, del Rosario AM, Root DE, Carpenter AE, Hahn WC, Sabatini DM, Chen CC, White FM, Bradner JE, Yaffe MB (2013) The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature 498:246–250PubMedCentralPubMedGoogle Scholar
- Fradet-Turcotte A, Moody C, Laimins LA, Archambault J (2010a) Nuclear export of human papillomavirus type 31 E1 is regulated by Cdk2 phosphorylation and required for viral genome maintenance. J Virol 84:11747–11760PubMedCentralPubMedGoogle Scholar
- Fradet-Turcotte A, Morin G, Lehoux M, Bullock PA, Archambault J (2010b) Development of quantitative and high-throughput assays of polyomavirus and papillomavirus DNA replication. Virology 399:65–76PubMedCentralPubMedGoogle Scholar
- Gagnon D, Joubert S, Senechal H, Fradet-Turcotte A, Torre S, Archambault J (2009) Proteasomal degradation of the papillomavirus E2 protein is inhibited by overexpression of bromodomain-containing protein 4. J Virol 83:4127–4139PubMedCentralPubMedGoogle Scholar
- Gagnon D, Senechal H, D’Abramo CM, Alvarez J, McBride AA, Archambault J (2013) Genetic analysis of the E2 transactivation domain dimerization interface from bovine papillomavirus type 1. Virology 439:132–139PubMedGoogle Scholar
- Geimanen J, Isok-Paas H, Pipitch R, Salk K, Laos T, Orav M, Reinson T, Ustav M, Ustav M, Ustav E (2011) Development of a cellular assay system to study the genome replication of high- and low-risk mucosal and cutaneous human papillomaviruses. J Virol 85:3315–3329PubMedCentralPubMedGoogle Scholar
- Gillespie KA, Mehta KP, Laimins LA, Moody CA (2012) Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J Virol 86:9520–9526PubMedCentralPubMedGoogle Scholar
- Gloss B, Bernard HU (1990) The E6/E7 promoter of human papillomavirus type 16 is activated in the absence of E2 proteins by a sequence-aberrant Sp1 distal element. J Virol 64:5577–5584PubMedCentralPubMedGoogle Scholar
- Gloss B, Yeo-Gloss M, Meisterenst M, Rogge L, Winnacker EL, Bernard HU (1989) Clusters of nuclear factor I binding sites identify enhancers of several papillomaviruses but alone are not sufficient for enhancer function. Nucleic Acids Res 17:3519–3533PubMedCentralPubMedGoogle Scholar
- Gopalakrishnan V, Khan SA (1994) E1 protein of human papillomavirus type 1a is sufficient for initiation of viral DNA replication. Proc Natl Acad Sci U S A 91:9597–9601PubMedCentralPubMedGoogle Scholar
- Grossel MJ, Sverdrup F, Breiding DE, Androphy EJ (1996) Transcriptional activation function is not required for stimulation of DNA replication by bovine papillomavirus type 1 E2. J Virol 70:7264–7269PubMedCentralPubMedGoogle Scholar
- Guilfoile P, Babcock H (2012) Human papillomavirus. Chelsea House, New YorkGoogle Scholar
- Gunasekharan V, Hache G, Laimins L (2012) Differentiation-dependent changes in levels of C/EBPbeta repressors and activators regulate human papillomavirus type 31 late gene expression. J Virol 86:5393–5398PubMedCentralPubMedGoogle Scholar
- Gunasekharan V, Laimins LA (2013) Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J Virol 87:6037–6043PubMedCentralPubMedGoogle Scholar
- Hartley KA, Alexander KA (2002) Human TATA binding protein inhibits human papillomavirus type 11 DNA replication by antagonizing E1-E2 protein complex formation on the viral origin of replication. J Virol 76:5014–5023PubMedCentralPubMedGoogle Scholar
- Hegde RS (2002) The papillomavirus E2 proteins: structure, function, and biology. Annu Rev Biophys Biomol Struct 31:343–360PubMedGoogle Scholar
- Hegde RS, Androphy EJ (1998) Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: implications for its DNA binding-site selection mechanism. J Mol Biol 284:1479–1489PubMedGoogle Scholar
- Hegde RS, Grossman SR, Laimins LA, Sigler PB (1992) Crystal structure at 1.7 A of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. Nature 359:505–512PubMedGoogle Scholar
- Hoffmann R, Hirt B, Bechtold V, Beard P, Raj K (2006) Different modes of human papillomavirus DNA replication during maintenance. J Virol 80:4431–4439PubMedCentralPubMedGoogle Scholar
- Hong S, Laimins LA (2013) The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog 9:e1003295PubMedCentralPubMedGoogle Scholar
- Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JP (2010) Mechanisms of cell entry by human papillomaviruses: an overview. Virol J 7:11PubMedCentralPubMedGoogle Scholar
- Hoskins EE, Morreale RJ, Werner SP, Higginbotham JM, Laimins LA, Lambert PF, Brown DR, Gillison ML, Nuovo GJ, Witte DP, Kim MO, Davies SM, Mehta PA, Butsch Kovacic M, Wikenheiser-Brokamp KA, Wells SI (2012) The fanconi anemia pathway limits human papillomavirus replication. J Virol 86:8131–8138PubMedCentralPubMedGoogle Scholar
- Hu Y, Clower RV, Melendy T (2006) Cellular topoisomerase I modulates origin binding by bovine papillomavirus type 1 E1. J Virol 80:4363–4371PubMedCentralPubMedGoogle Scholar
- Hubert WG, Laimins LA (2002) Human papillomavirus type 31 replication modes during the early phases of the viral life cycle depend on transcriptional and posttranscriptional regulation of E1 and E2 expression. J Virol 76:2263–2273PubMedCentralPubMedGoogle Scholar
- Iftner T, Elbel M, Schopp B, Hiller T, Loizou JI, Caldecott KW, Stubenrauch F (2002) Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J 21:4741–4748PubMedCentralPubMedGoogle Scholar
- Ilves I, Maemets K, Silla T, Janikson K, Ustav M (2006) Brd4 is involved in multiple processes of the bovine papillomavirus type 1 life cycle. J Virol 80:3660–3665PubMedCentralPubMedGoogle Scholar
- Ishiji T, Lace MJ, Parkkinen S, Anderson RD, Haugen TH, Cripe TP, Xiao JH, Davidson I, Chambon P, Turek LP (1992) Transcriptional enhancer factor (TEF)-1 and its cell-specific co-activator activate human papillomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBO J 11:2271–2281PubMedCentralPubMedGoogle Scholar
- Jiang G, Plo I, Wang T, Rahman M, Cho JH, Yang E, Lopez BS, Xia F (2013) BRCA1-Ku80 protein interaction enhances end-joining fidelity of chromosomal double-strand breaks in the G1 phase of the cell cycle. J Biol Chem 288:8966–8976PubMedCentralPubMedGoogle Scholar
- Jiang M, Imperiale MJ (2012) Design stars: how small DNA viruses remodel the host nucleus. Future Virol 7:445–459PubMedCentralPubMedGoogle Scholar
- Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M (2009) Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog 5:e1000397PubMedCentralPubMedGoogle Scholar
- Kadaja M, Sumerina A, Verst T, Ojarand M, Ustav E, Ustav M (2007) Genomic instability of the host cell induced by the human papillomavirus replication machinery. EMBO J 26:2180–2191PubMedCentralPubMedGoogle Scholar
- Kennedy IM, Simpson S, Macnab JC, Clements JB (1987) Human papillomavirus type 16 DNA from a vulvar carcinoma in situ is present as head-to-tail dimeric episomes with a deletion in the non-coding region. J Gen Virol 68(Pt 2):451–462PubMedGoogle Scholar
- Kristiansen E, Jenkins A, Holm R (1994) Coexistence of episomal and integrated HPV16 DNA in squamous cell carcinoma of the cervix. J Clin Pathol 47:253–256PubMedCentralPubMedGoogle Scholar
- Kuhne C, Banks L (1998) E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J Biol Chem 273:34302–34309PubMedGoogle Scholar
- Kuo SR, Liu JS, Broker TR, Chow LT (1994) Cell-free replication of the human papillomavirus DNA with homologous viral E1 and E2 proteins and human cell extracts. J Biol Chem 269:24058–24065PubMedGoogle Scholar
- Kurth I, O’Donnell M (2013) New insights into replisome fluidity during chromosome replication. Trends Biochem Sci 38:195–203PubMedCentralPubMedGoogle Scholar
- Kusumoto-Matsuo R, Kanda T, Kukimoto I (2011) Rolling circle replication of human papillomavirus type 16 DNA in epithelial cell extracts. Genes Cells 16:23–33PubMedGoogle Scholar
- Kyo S, Tam A, Laimins LA (1995) Transcriptional activity of human papillomavirus type 31b enhancer is regulated through synergistic interaction of AP1 with two novel cellular factors. Virology 211:184–197PubMedGoogle Scholar
- Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288:1643–1647PubMedGoogle Scholar
- Lambert PF (1991) Papillomavirus DNA replication. J Virol 65:3417–3420PubMedCentralPubMedGoogle Scholar
- Lambert PF, Monk BC, Howley PM (1990) Phenotypic analysis of bovine papillomavirus type 1 E2 repressor mutants. J Virol 64:950–956PubMedCentralPubMedGoogle Scholar
- Law MF, Lowy DR, Dvoretzky I, Howley PM (1981) Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences. Proc Natl Acad Sci U S A 78:2727–2731PubMedCentralPubMedGoogle Scholar
- Lee AY, Chiang CM (2009) Chromatin adaptor Brd4 modulates E2 transcription activity and protein stability. J Biol Chem 284:2778–2786PubMedCentralPubMedGoogle Scholar
- Lehman CW, Botchan MR (1998) Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. Proc Natl Acad Sci U S A 95:4338–4343PubMedCentralPubMedGoogle Scholar
- Lehman CW, King DS, Botchan MR (1997) A papillomavirus E2 phosphorylation mutant exhibits normal transient replication and transcription but is defective in transformation and plasmid retention. J Virol 71:3652–3665PubMedCentralPubMedGoogle Scholar
- Leman AR, Noguchi E (2013) The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 4:1–32Google Scholar
- Leonard AC, Mechali M (2013) DNA replication origins. Cold Spring Harb Perspect Biol 5:a010116PubMedCentralPubMedGoogle Scholar
- Li R, Botchan MR (1994) Acidic transcription factors alleviate nucleosome-mediated repression of DNA replication of bovine papillomavirus type 1. Proc Natl Acad Sci U S A 91:7051–7055PubMedCentralPubMedGoogle Scholar
- Lieberman PM, Hu J, Renne R (2007) Maintenance and replication during latency. In: Arvin A, Campadelli-fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis, CambridgeGoogle Scholar
- Lim DA, Gossen M, Lehman CW, Botchan MR (1998) Competition for DNA binding sites between the short and long forms of E2 dimers underlies repression in bovine papillomavirus type 1 DNA replication control. J Virol 72:1931–1940PubMedCentralPubMedGoogle Scholar
- Liu X, Stenlund A (2010) Mutations in sensor 1 and walker B in the bovine papillomavirus E1 initiator protein mimic the nucleotide-bound state. J Virol 84:1912–1919PubMedCentralPubMedGoogle Scholar
- Lowy DR, Dvoretzky I, Shober R, Law MF, Engel L, Howley PM (1980) In vitro tumorigenic transformation by a defined sub-genomic fragment of bovine papilloma virus DNA. Nature 287:72–74PubMedGoogle Scholar
- Lu JZ, Sun YN, Rose RC, Bonnez W, McCance DJ (1993) Two E2 binding sites (E2BS) alone or one E2BS plus an A/T-rich region are minimal requirements for the replication of the human papillomavirus type 11 origin. J Virol 67:7131–7139PubMedCentralPubMedGoogle Scholar
- Lusky M, Botchan MR (1985) Genetic analysis of bovine papillomavirus type 1 trans-acting replication factors. J Virol 53:955–965PubMedCentralPubMedGoogle Scholar
- Macalpine DM, Almouzni G (2013) Chromatin and DNA replication. Cold Spring Harb Perspect Biol 5:a010207PubMedGoogle Scholar
- Mack DH, Laimins LA (1991) A keratinocyte-specific transcription factor, KRF-1, interacts with AP-1 to activate expression of human papillomavirus type 18 in squamous epithelial cells. Proc Natl Acad Sci U S A 88:9102–9106PubMedCentralPubMedGoogle Scholar
- Mannik A, Runkorg K, Jaanson N, Ustav M, Ustav E (2002) Induction of the bovine papillomavirus origin “onion skin”-type DNA replication at high E1 protein concentrations in vivo. J Virol 76:5835–5845PubMedCentralPubMedGoogle Scholar
- Martinez I, Wang J, Hobson KF, Ferris RL, Khan SA (2007) Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer 43:415–432PubMedCentralPubMedGoogle Scholar
- Masterson PJ, Stanley MA, Lewis AP, Romanos MA (1998) A C-terminal helicase domain of the human papillomavirus E1 protein binds E2 and the DNA polymerase alpha-primase p68 subunit. J Virol 72:7407–7419PubMedCentralPubMedGoogle Scholar
- McBride AA (2008) Replication and partitioning of papillomavirus genomes. Adv Virus Res 72:155–205PubMedCentralPubMedGoogle Scholar
- McBride AA, Bolen JB, Howley PM (1989) Phosphorylation sites of the E2 transcriptional regulatory proteins of bovine papillomavirus type 1. J Virol 63:5076–5085PubMedCentralPubMedGoogle Scholar
- McBride AA, Howley PM (1991) Bovine papillomavirus with a mutation in the E2 serine 301 phosphorylation site replicates at a high copy number. J Virol 65:6528–6534PubMedCentralPubMedGoogle Scholar
- McBride AA, Sakakibara N, Stepp WH, Jang MK (2012) Hitchhiking on host chromatin: how papillomaviruses persist. Biochim Biophys Acta 1819:820–825PubMedCentralPubMedGoogle Scholar
- McPhillips MG, Oliveira JG, Spindler JE, Mitra R, McBride AA (2006) Brd4 is required for e2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J Virol 80:9530–9543PubMedCentralPubMedGoogle Scholar
- McPhillips MG, Ozato K, McBride AA (2005) Interaction of bovine papillomavirus E2 protein with Brd4 stabilizes its association with chromatin. J Virol 79:8920–8932PubMedCentralPubMedGoogle Scholar
- McShan GD, Wilson VG (1997) Reconstitution of a functional bovine papillomavirus type 1 origin of replication reveals a modular tripartite replicon with an essential AT-rich element. Virology 237:198–208PubMedGoogle Scholar
- Mechali M (2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11:728–738PubMedGoogle Scholar
- Melanson SM, Androphy EJ (2009) Topography of bovine papillomavirus E2 protein on the viral genome during the cell cycle. Virology 393:258–264PubMedCentralPubMedGoogle Scholar
- Melar-New M, Laimins LA (2010) Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 84:5212–5221PubMedCentralPubMedGoogle Scholar
- Menges CW, Baglia LA, Lapoint R, McCance DJ (2006) Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res 66:5555–5559PubMedGoogle Scholar
- Michaud DS, Langevin SM, Eliot M, Nelson HH, Pawlita M, McClean MD, Kelsey KT (2014) High-risk HPV types and head and neck cancer. Int J Cancer 135:1653–1661PubMedGoogle Scholar
- Mighty KK, Laimins LA (2011) p63 is necessary for the activation of human papillomavirus late viral functions upon epithelial differentiation. J Virol 85:8863–8869PubMedCentralPubMedGoogle Scholar
- Mohr IJ, Clark R, Sun S, Androphy EJ, Macpherson P, Botchan MR (1990) Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250:1694–1699PubMedGoogle Scholar
- Moody CA, Fradet-Turcotte A, Archambault J, Laimins LA (2007) Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proc Natl Acad Sci U S A 104:19541–19546PubMedCentralPubMedGoogle Scholar
- Moody CA, Laimins LA (2009) Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 5:e1000605PubMedCentralPubMedGoogle Scholar
- Morin G, Fradet-Turcotte A, di Lello P, Bergeron-Labrecque F, Omichinski JG, Archambault J (2011) A conserved amphipathic helix in the N-terminal regulatory region of the papillomavirus E1 helicase is required for efficient viral DNA replication. J Virol 85:5287–5300PubMedCentralPubMedGoogle Scholar
- Moscufo N, Sverdrup F, Breiding DE, Androphy EJ (1999) Two distinct regions of the BPV1 E1 replication protein interact with the activation domain of E2. Virus Res 65:141–154PubMedGoogle Scholar
- Muller M, Demeret C (2012) The HPV E2-host protein-protein interactions: a complex hijacking of the cellular network. Open Virol J 6:173–189PubMedCentralPubMedGoogle Scholar
- Muller M, Jacob Y, Jones L, Weiss A, Brino L, Chantier T, Lotteau V, Favre M, Demeret C (2012) Large scale genotype comparison of human papillomavirus E2-host interaction networks provides new insights for e2 molecular functions. PLoS Pathog 8:e1002761PubMedCentralPubMedGoogle Scholar
- O’Connor MJ, Stunkel W, Koh CH, Zimmermann H, Bernard HU (2000) The differentiation-specific factor CDP/Cut represses transcription and replication of human papillomaviruses through a conserved silencing element. J Virol 74:401–410PubMedCentralPubMedGoogle Scholar
- Offord EA, Beard P (1990) A member of the activator protein 1 family found in keratinocytes but not in fibroblasts required for transcription from a human papillomavirus type 18 promoter. J Virol 64:4792–4798PubMedCentralPubMedGoogle Scholar
- Orav M, Henno L, Isok-Paas H, Geimanen J, Ustav M, Ustav E (2013) Recombination-dependent oligomerization of human papillomavirus genomes upon transient DNA replication. J Virol 87:12051–12068PubMedCentralPubMedGoogle Scholar
- Parish JL, Bean AM, Park RB, Androphy EJ (2006) ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell 24:867–876PubMedGoogle Scholar
- Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, Lambert PF (2010) Deficiencies in the fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 70:9959–9968PubMedCentralPubMedGoogle Scholar
- Park RB, Androphy EJ (2002) Genetic analysis of high-risk e6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J Virol 76:11359–11364PubMedCentralPubMedGoogle Scholar
- Pastwa E, Blasiak J (2003) Non-homologous DNA end joining. Acta Biochim Pol 50:891–908PubMedGoogle Scholar
- Penrose KJ, Garcia-Alai M, De Prat-Gay G, McBride AA (2004) Casein Kinase II phosphorylation-induced conformational switch triggers degradation of the papillomavirus E2 protein. J Biol Chem 279:22430–22439PubMedGoogle Scholar
- Penrose KJ, McBride AA (2000) Proteasome-mediated degradation of the papillomavirus E2-TA protein is regulated by phosphorylation and can modulate viral genome copy number. J Virol 74:6031–6038PubMedCentralPubMedGoogle Scholar
- Piirsoo M, Ustav E, Mandel T, Stenlund A, Ustav M (1996) Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator. EMBO J 15:1–11PubMedCentralPubMedGoogle Scholar
- Pittayakhajonwut D, Angeletti PC (2010) Viral trans-factor independent replication of human papillomavirus genomes. Virol J 7:123PubMedCentralPubMedGoogle Scholar
- Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22:5784–5791PubMedGoogle Scholar
- Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ, Woodworth CD, Connor JP, Haugen TH, Smith EM, Kelsey KT, Turek LP, Ahlquist P (2007) Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res 67:4605–4619PubMedCentralPubMedGoogle Scholar
- Quinlan EJ, Culleton SP, Wu SY, Chiang CM, Androphy EJ (2012) Acetylation of conserved lysines in bovine papillomavirus E2 by p300. J Virol 87(3):1497–1507Google Scholar
- Rabson MS, Yee C, Yang YC, Howley PM (1986) Bovine papillomavirus type 1 3’ early region transformation and plasmid maintenance functions. J Virol 60:626–634PubMedCentralPubMedGoogle Scholar
- Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, da Silva DM, Schelhaas M, Kast WM (2013) The evolving field of human papillomavirus receptor research: a review of binding and entry. J Virol 87:6062–6072PubMedCentralPubMedGoogle Scholar
- Ravnan JB, Gilbert DM, ten Hagen KG, Cohen SN (1992) Random-choice replication of extrachromosomal bovine papillomavirus (BPV) molecules in heterogeneous, clonally derived BPV-infected cell lines. J Virol 66:6946–6952PubMedCentralPubMedGoogle Scholar
- Reinson T, Toots M, Kadaja M, Pipitch R, Allik M, Ustav E, Ustav M (2013) Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification. J Virol 87:951–964PubMedCentralPubMedGoogle Scholar
- Rho J, Lee S, de Villiers EM, Choe J (1997) Identification of cis-regulatory elements in the upstream regulatory region of human papillomavirus type 59. Virus Res 47:155–166PubMedGoogle Scholar
- Sakakibara N, Chen D, Jang MK, Kang DW, Luecke HF, Wu SY, Chiang CM, McBride AA (2013a) Brd4 is displaced from HPV replication factories as they expand and amplify viral DNA. PLoS Pathog 9:e1003777PubMedCentralPubMedGoogle Scholar
- Sakakibara N, Chen D, McBride AA (2013b) Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog 9:e1003321PubMedCentralPubMedGoogle Scholar
- Sakakibara N, Mitra R, McBride AA (2011) The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J Virol 85:8981–8995PubMedCentralPubMedGoogle Scholar
- Sanders CM, Stenlund A (1998) Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. EMBO J 17:7044–7055PubMedCentralPubMedGoogle Scholar
- Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L, Day PM, Schiller JT, Helenius A (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8:e1002657PubMedCentralPubMedGoogle Scholar
- Schmitt J, Schlehofer JR, Mergener K, Gissmann L, Zur Hausen H (1989) Amplification of bovine papillomavirus DNA by N-methyl-N’-nitro-N-nitrosoguanidine, ultraviolet irradiation, or infection with herpes simplex virus. Virology 172:73–81PubMedGoogle Scholar
- Schuck S, Ruse C, Stenlund A (2013) CK2 phosphorylation inactivates DNA binding by the papillomavirus E1 and E2 proteins. J Virol 87:7668–7679PubMedCentralPubMedGoogle Scholar
- Schuck S, Stenlund A (2011) Mechanistic analysis of local ori melting and helicase assembly by the papillomavirus E1 protein. Mol Cell 43:776–787PubMedCentralPubMedGoogle Scholar
- Schvartzman JB, Adolph S, Martin-Parras L, Schildkraut CL (1990) Evidence that replication initiates at only some of the potential origins in each oligomeric form of bovine papillomavirus type 1 DNA. Mol Cell Biol 10:3078–3086PubMedCentralPubMedGoogle Scholar
- Sedman J, Stenlund A (1995) Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J 14:6218–6228PubMedCentralPubMedGoogle Scholar
- Sekhar V, McBride AA (2012) Phosphorylation regulates binding of the human papillomavirus type 8 E2 protein to host chromosomes. J Virol 86:10047–10058PubMedCentralPubMedGoogle Scholar
- Sekhar V, Reed SC, McBride AA (2010) Interaction of the betapapillomavirus E2 tethering protein with mitotic chromosomes. J Virol 84:543–557PubMedCentralPubMedGoogle Scholar
- Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 77:13125–13135PubMedCentralPubMedGoogle Scholar
- Shin HJ, Joo J, Yoon JH, Yoo CW, Kim JY (2014) Physical status of human papillomavirus integration in cervical cancer is associated with treatment outcome of the patients treated with radiotherapy. PLoS ONE 9:e78995PubMedCentralPubMedGoogle Scholar
- Shin KH, Ahn JH, Kang MK, Lim PK, Yip FK, Baluda MA, Park NH (2006a) HPV-16 E6 oncoprotein impairs the fidelity of DNA end-joining via p53-dependent and -independent pathways. Int J Oncol 28:209–215PubMedGoogle Scholar
- Shin KH, Kang MK, Kim RH, Kameta A, Baluda MA, Park NH (2006b) Abnormal DNA end-joining activity in human head and neck cancer. Int J Mol Med 17:917–924PubMedGoogle Scholar
- Shiotani B, Nguyen HD, Hakansson P, Marechal A, Tse A, Tahara H, Zou L (2013) Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep 3:1651–1662PubMedCentralPubMedGoogle Scholar
- Slebos RJ, Jehmlich N, Brown B, Yin Z, Chung CH, Yarbrough WG, Liebler DC (2013) Proteomic analysis of oropharyngeal carcinomas reveals novel HPV-associated biological pathways. Int J Cancer 132:568–579PubMedCentralPubMedGoogle Scholar
- Spangle JM, Munger K (2010) The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol 84:9398–9407PubMedCentralPubMedGoogle Scholar
- Spardy N, Covella K, Cha E, Hoskins EE, Wells SI, Duensing A, Duensing S (2009) Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res 69:7022–7029PubMedCentralPubMedGoogle Scholar
- Spardy N, Duensing A, Charles D, Haines N, Nakahara T, Lambert PF, Duensing S (2007) The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J Virol 81:13265–13270PubMedCentralPubMedGoogle Scholar
- Straub E, Dreer M, Fertey J, Iftner T, Stubenrauch F (2014) The viral E8^E2C repressor limits productive replication of human papillomavirus 16. J Virol 88:937–947PubMedCentralPubMedGoogle Scholar
- Stubenrauch F, Hummel M, Iftner T, Laimins LA (2000) The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol 74:1178–1186PubMedCentralPubMedGoogle Scholar
- Surviladze Z, Sterk RT, Deharo SA, Ozbun MA (2013) Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. J Virol 87:2508–2517PubMedCentralPubMedGoogle Scholar
- Thomas JT, Hubert WG, Ruesch MN, Laimins LA (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci U S A 96:8449–8454PubMedCentralPubMedGoogle Scholar
- Ustav E, Ustav M, Szymanski P, Stenlund A (1993) The bovine papillomavirus origin of replication requires a binding site for the E2 transcriptional activator. Proc Natl Acad Sci U S A 90:898–902PubMedCentralPubMedGoogle Scholar
- Ustav M, Stenlund A (1991) Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO J 10:449–457PubMedCentralPubMedGoogle Scholar
- Ustav M, Ustav E, Szymanski P, Stenlund A (1991) Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. EMBO J 10:4321–4329PubMedCentralPubMedGoogle Scholar
- van Tine BA, Dao LD, Wu SY, Sonbuchner TM, Lin BY, Zou N, Chiang CM, Broker TR, Chow LT (2004) Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci U S A 101:4030–4035PubMedCentralPubMedGoogle Scholar
- Wallace NA, Gasior SL, Faber ZJ, Howie HL, Deininger PL, Galloway DA (2013) HPV 5 and 8 E6 expression reduces ATM protein levels and attenuates LINE-1 retrotransposition. Virology 443:69–79PubMedGoogle Scholar
- Wallace NA, Robinson K, Howie HL, Galloway DA (2012) HPV 5 and 8 E6 abrogate ATR activity resulting in increased persistence of UVB induced DNA damage. PLoS Pathog 8:e1002807PubMedCentralPubMedGoogle Scholar
- Wang J, Chen J, Gong Z (2013a) TopBP1 controls BLM protein level to maintain genome stability. Mol Cell 52:667–678PubMedGoogle Scholar
- Wang X, Helfer CM, Pancholi N, Bradner JE, You J (2013b) Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J Virol 87:3871–3884PubMedCentralPubMedGoogle Scholar
- Wilson R, Fehrmann F, Laimins LA (2005) Role of the E1–E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol 79:6732–6740PubMedCentralPubMedGoogle Scholar
- Winokur PL, McBride AA (1992) Separation of the transcriptional activation and replication functions of the bovine papillomavirus-1 E2 protein. EMBO J 11:4111–4118PubMedCentralPubMedGoogle Scholar
- Xue Y, Bellanger S, Zhang W, Lim D, Low J, Lunny D, Thierry F (2010) HPV16 E2 is an immediate early marker of viral infection, preceding E7 expression in precursor structures of cervical carcinoma. Cancer Res 70:5316–5325PubMedGoogle Scholar
- Yardimci H, Wang X, Loveland AB, Tappin I, Rudner DZ, Hurwitz J, van Oijen AM, Walter JC (2012) Bypass of a protein barrier by a replicative DNA helicase. Nature 492:205–209PubMedCentralPubMedGoogle Scholar
- You J (2010) Papillomavirus interaction with cellular chromatin. Biochim Biophys Acta 1799:192–199PubMedCentralPubMedGoogle Scholar
- You J, Croyle JL, Nishimura A, Ozato K, Howley PM (2004) Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117:349–360PubMedGoogle Scholar
- You J, Schweiger MR, Howley PM (2005) Inhibition of E2 binding to Brd4 enhances viral genome loss and phenotypic reversion of bovine papillomavirus-transformed cells. J Virol 79:14956–14961PubMedCentralPubMedGoogle Scholar
- Yu T, Peng YC, Androphy EJ (2007) Mitotic kinesin-like protein 2 binds and colocalizes with papillomavirus E2 during mitosis. J Virol 81:1736–1745PubMedCentralPubMedGoogle Scholar
- Yukawa K, Butz K, Yasui T, Kikutani H, Hoppe-Seyler F (1996) Regulation of human papillomavirus transcription by the differentiation-dependent epithelial factor Epoc-1/skn-1a. J Virol 70:10–16PubMedCentralPubMedGoogle Scholar
- Zheng ZM, Baker CC (2006) Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 11:2286–2302PubMedCentralPubMedGoogle Scholar