Skip to main content

The Role of Immune Modulation in the Carcinogenesis and Treatment of HPV-Associated Oropharyngeal Cancer

  • Chapter
  • First Online:
Book cover Human Papillomavirus (HPV)-Associated Oropharyngeal Cancer

Abstract

Human papillomavirus (HPV) is increasingly identified as a causative agent for oropharyngeal squamous cell carcinoma (OPSCC), often in relatively young patients lacking traditional carcinogenic risk factors such as tobacco and alcohol use. A growing body of literature has highlighted the importance of immune impairment in the pathogenesis of HPV-related premalignant and malignant lesions in the uterine cervix and, more recently, the oropharynx. This chapter will summarize current knowledge of the mechanisms that human papillomaviruses have evolved to evade the host immune system in the development of malignancy and will conclude with a discussion on preventive and therapeutic strategies that exploit these immune modulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers A, Abe K, Hunt J et al (2005) Antitumor activity of human papillomavirus type 16 E7-specific T cells against virally infected squamous cell carcinoma of the head and neck. Cancer Res 65:11146–11154

    Article  CAS  PubMed  Google Scholar 

  • Alcocer-Gonzalez JM, Berumen J, Taméz-Guerra R et al (2006) In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol 19:481–491

    Article  CAS  PubMed  Google Scholar 

  • Allen C, Lewis J, El-Mofty S et al (2010) Human papillomavirus and oropharynx cancer: biology, detection and clinical implications. Laryngoscope 120:1756–1772

    Article  PubMed  Google Scholar 

  • Allen C, Judd N, Bui J et al (2011) The clinical implications of antitumor immunity in head and neck cancer. Laryngoscope 122:144–157

    Article  Google Scholar 

  • Badoual C, Hans S, Merillon N et al (2013) PD-1-expressing tumor infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 73:128–138

    Article  CAS  PubMed  Google Scholar 

  • Bauman JE, Gooding WE, Clump DA et al (2014) Phase I trial of cetuximab, intensity modulated radiotherapy (IMRT), and the anti-CTLA-4 monoclonal antibody (mAb) ipilimumab in previously untreated, locally advanced head and neck squamous cell carcinoma (PULA HNSCC). Abstracts from the annual meeting of the American Society of Clinical Oncology, Chicago, Illinois, 31 May–3 June, 2014

    Google Scholar 

  • Beachler DC, Weber KM, Margolick JB et al (2012) Risk factors for oral HPV infection among a high prevalence population of HIV-positive and at-risk HIV-negative adults. Cancer Epidemiol Biomarkers Prev 21:122–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Best S, Niparko K, Pai S (2012) Biology of human papillomavirus infection and immune therapy for HPV-related head and neck cancers. Otolaryngol Clin N Am 45:807–822

    Article  Google Scholar 

  • Bhat P, Mattarollo SR, Gosmann C et al (2011) Regulation of immune responses to HPV infection and during HPV-directed immunotherapy. Immunol Rev 239:85–98

    Article  CAS  PubMed  Google Scholar 

  • Bodily J, Laimins LA (2011) Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol 19:33–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brun JL, Dalstein V, Leveque J et al (2011) Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol 204:169.e1–8

    Google Scholar 

  • Chang YE, Laimins LA (2000) Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 74:4174–4182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clinical Trials Database (2014) National Cancer Institute, Bethesda. http://www.cancer.gov/clinicaltrials/search/view?cdrid=749477&version=HealthProfessional. Accessed 26 June 2014

  • Denny LA, Franceschi S, de Sanjosé S et al (2012) Human papillomavirus, human immunodeficiency virus and immunosuppression. Vaccine 30S:F168–F174

    Article  Google Scholar 

  • Duray A, Demoulin S, Hubert P et al (2010) Immune suppression in head and neck cancers: a review. Clin Dev Immunol 2010:701657

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Omar EM, Ng MT, Hold GL (2008) Polymorphisms in toll-like receptor genes and risk of cancer. Oncogene 27:244–252

    Article  CAS  PubMed  Google Scholar 

  • Ferris R (2013) PD-1 targeting in cancer immunotherapy. Cancer 119. doi:10.1002/cncr.27832

  • Frazer IH (2009) Interaction of human papillomaviruses with the host immune system: a well evolved relationship. Virology 384:410–414

    Article  CAS  PubMed  Google Scholar 

  • Gildener-Leapman N, Lee J, Ferris RL (2013) Tailored immunotherapy for HPV positive head and neck squamous cell cancer. Oral Oncol. doi:10.1038/bjc.2013.645

    PubMed Central  Google Scholar 

  • Giuliano AR, Palefsky JM, Goldstone S et al (2011) Efficacy of quadrivalent HPV vaccine against HPV infection and disease in males. N Engl J Med 364:401–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanodia S, Fahey LM, Kast WM (2007) Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets 7:79–89

    Article  CAS  PubMed  Google Scholar 

  • King EV, Ottensmeier CH, Thomas GJ (2014) The immune response in HPV+ oropharyngeal cancer. Oncoimmunol 3:e27254

    Article  Google Scholar 

  • Koskinen WJ, Partanen J, Vaheri A et al (2006) HLA-DRB1, -DQB1 alleles in head and neck carcinoma patients. Tissue Antigens 67:237–240

    Article  CAS  PubMed  Google Scholar 

  • Lyford-Pike S, Peng S, Young G et al (2013) Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 73:1733–1741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madkan VK, Cook-Norris RH, Steadman MC et al (2007) The oncogenic potential of human papillomaviruses: a review on the role of host genetics and environmental factors. Br J Dermatol 157:228–241

    Article  CAS  PubMed  Google Scholar 

  • Malejczyk J, Malejczyk M, Majewski S et al (1994) Increased tumorigenicity of human keratinocytes harboring human papillomavirus type 16 is associated with resistance to endogenous tumor necrosis factor-alpha-mediated growth limitation. Int J Cancer 56:593–598

    Article  CAS  PubMed  Google Scholar 

  • Malm IJ, Bruno TC, Fu J et al (2014) Expression profile and in vitro blockade of PD-1 in HPV-negative head and neck squamous cell carcinoma. Head Neck. doi:10.1002/hed.23706

    PubMed  Google Scholar 

  • Näsman A, Romanitan M, Nordfors C et al (2012) Tumor Infiltrating CD8+ and Foxp3+ lymphocytes correlate to clinical outcome and human papillomavirus (HPV) status in tonsillar cancer. PLoS ONE 7:e38711

    Article  PubMed Central  PubMed  Google Scholar 

  • Nees M, Geoghegan JM, Hyman T et al (2001) Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kB-responsive genes in cervical keratinocytes. J Virol 75:4283–4296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien PM, Campo MS (2002) Evasion of host immunity directed by human papillomavirus-encoded proteins. Virus Res 88:103–117

    Article  PubMed  Google Scholar 

  • Pai S (2013) Adaptive immune resistance in HPV-associated head and neck squamous cell carcinoma. Oncoimmunol 2:e24065

    Article  Google Scholar 

  • Quezada S, Peggs K (2013) Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Br J Cancer 108:1560–1565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schiller JT, Castellsagué X, Garland SM (2012) A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30S:F123–F138

    Article  Google Scholar 

  • Scott M, Nakagawa M, Moscicki A (2001) Cell-mediated immune response to human papillomavirus infection. Clin Diagn Lab Immunol 8:209–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sewell DA, Pan ZK, Paterson Y (2008) Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors. Vaccine 26:5315–5320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sin JI, Kim JM, Bae SH et al (2009) Adoptive transfer of human papillomavirus E7-specific CTL enhances tumor chemoresponse through the perforin-/granzyme-mediated pathway. Mol Ther 17:906–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spanos WC, Nowicki P, Lee DW et al (2009) Immune response during therapy with cisplatin or radiation for human papillomavirus-related head and neck cancer. Arch Otolaryngol Head Neck Surg 135:1137–1146

    Article  PubMed  Google Scholar 

  • Stanley MA, Pett MR, Coleman N (2007) HPV: from infection to cancer. Biochem Soc Trans 35:1456–1460

    Article  CAS  PubMed  Google Scholar 

  • Stanley MA (2008) Immunobiology of HPV and HPV vaccines. Gyn Oncol 109:S15–S21

    Article  CAS  Google Scholar 

  • Stanley MA, Pinto LA, Trimble C (2012) Human papillomavirus vaccines—immune response. Vaccine 30S:F83–F87

    Article  Google Scholar 

  • Tindle RW (2002) Immune evasion in human papillomavirus-associated cervical cancer. Cancer 2:1–7

    Google Scholar 

  • Vambutas A, DeVoti J, Pinn W et al (2001) Interaction of human papillomavirus type 11 E7 protein with TAP-1 results in the reduction of ATP-dependent peptide transport. Clin Immunol 101:94–99

    Article  CAS  PubMed  Google Scholar 

  • Vu HL, Sikora AG, Fu S et al (2010) HPV-induced oropharyngeal cancer, immune response and response to therapy. Cancer Lett 288:149–155

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Zhu K, Cheng H (2011) Ubiquitination in host immune responses to human papillomavirus infection. Arch Dermatol Res 303:217–230

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Zhu K, Cheng H (2013) Toll-like receptors in human papillomavirus infection. Arch Immunol Ther Exp 61:203–215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungwon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmitt, N.C., Ferris, R.L., Kim, S. (2015). The Role of Immune Modulation in the Carcinogenesis and Treatment of HPV-Associated Oropharyngeal Cancer. In: Miller, D., Stack, M. (eds) Human Papillomavirus (HPV)-Associated Oropharyngeal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-21100-8_13

Download citation

Publish with us

Policies and ethics