Skip to main content

Making-of Synthetic Biology: The European CyanoFactory Research Consortium

  • Chapter
  • First Online:
Ambivalences of Creating Life

Part of the book series: Ethics of Science and Technology Assessment ((ETHICSSCI,volume 45))

  • 944 Accesses

Abstract

CyanoFactory is the name of a research consortium that aims at the development of methods for the optimization of the microorganism Synechocystis PCC 6803 for photobiological hydrogen production. The methods applied belong to the field of synthetic biology. The consortium consists of ten partners from seven European countries and is funded by the European Commission as part of the Future and Emerging Technologies Programme. In this chapter I describe how synthetic biology emerged from systems biology and how its foundations were laid in the 1930s. I then present my personal account of how the CyanoFactory consortium came together, what its research goals are, and why the methodology that we apply is categorized as synthetic biology, in contrast to classical gene technology. The central themes of this chapter are the biological, technical and management challenges of CyanoFactory and how the synthetic biology research approach taken by the consortium helps to overcome them. I wish to show that synthetic biology research should be seen as an interdisciplinary quest in the sense envisioned by Warren Weaver, director of the Division of Natural Sciences at the Rockefeller Foundation, when establishing the Science of Man Agenda in the 1930s.

In memory of my scientific teacher, Horst Senger (14. Aug 1931–7. Feb 2015), professor of plant physiology, who guided me into the world of photosynthesis and photobiological hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angermayr SA, Hellingwerf KJ, Lindblad P, Teixeira de Mattos MJ (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20:257–263

    Article  Google Scholar 

  • Bacon F (1627) The New Atlantis. Available via the Gutenberg project. http://www.gutenberg.org/ebooks/2434. Accessed 17 Mar 2015

  • Berla BM, Saha R, Immethun CM et al (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:1–14

    Article  Google Scholar 

  • Bélaich J-P, Bruschi M, Garcia J-L (eds) (1990) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum Press, New York

    Google Scholar 

  • Bingham AS, Smith PR, Swartz JR (2012) Evolution of an [FeFe] hydrogenase with decreased oxygen sensitivity. Int J Hydrogen Energy 37:2965–2976

    Article  Google Scholar 

  • Camsund D, Lindblad P (2014) Engineered transcriptional systems for cyanobacterial biotechnology. Front Bioeng Biotechnol 2:40

    Article  Google Scholar 

  • Camsund D, Heidorn T, Lindblad P (2014) Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium. J Biol Eng 8:4

    Article  Google Scholar 

  • Crick F (1970) Molecular biology in the year 2000. Nature 228:613–615

    Article  Google Scholar 

  • Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29:95–103

    Article  Google Scholar 

  • European Commission (2015) Future and emerging technologies (FET). http://ec.europa.eu/digital-agenda/en/future-emerging-technologies-fet. Accessed 18 Mar 2015

  • Heidorn T, Camsund D, Huang H-H et al (2011) Synthetic biology in cyanobacteria engineering and analyzing novel functions. Syn Biol 497:539–579

    Google Scholar 

  • Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38:2577–2593

    Article  Google Scholar 

  • Hoppe-Seyler F (1887) Die Methangärung der Essigsäure. Z Phys Chem 2:561–568

    Google Scholar 

  • Ikeuchi M, Tabata S (2001) Synechocystis sp. PCC 6803—a useful tool in the study of the genetics of cyanobacteria. Photosyn Res 70:73–83

    Article  Google Scholar 

  • Kaneko T, Sato S, Kotani H et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  Google Scholar 

  • Kanesaki Y, Shiwa Y, Tajima N et al (2012) Identification of substrain-specific mutations by massively parallel whole-genome resequencing of Synechocystis sp. PCC 6803. DNA Res 19:67–79

    Article  Google Scholar 

  • Karr JR, Sanghvi JC, Macklin DN et al (2012) A whole-cell computational model predicts phenotype from genotype. Trends Genet 150:389–401

    Google Scholar 

  • Kay LE (1992) The molecular vision of life. Oxford University Press, Oxford

    Google Scholar 

  • Kind G, Zuchantke E, Wünschiers R (2015) CyanoFactory knowledge base and synthetic biology: a plea for human curated bio-databases. In: Pastor O, Sinoquet C, Fred A et al (eds) 6th international conference on bioinformatics: models, methods and algorithms. Scitepress, Lisboa/Portugal, pp 237–242

    Google Scholar 

  • Lindblad P, Lindberg P, Oliveira P et al (2012) Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production. Ambio 41:163–168

    Article  Google Scholar 

  • Lopo M, Montagud A, Navarro E et al (2012) Experimental and modeling analysis of Synechocystis sp. PCC 6803 growth. J Mol Microbiol Biotechnol 22:71–82

    Article  Google Scholar 

  • Olby R (1990) The molecular revolution in biology. In: Olby RC, Cantor GN, Christie JRR, Hodge MJS (eds) Companion to the history of modern science. Routledge, London, pp 503–520

    Google Scholar 

  • Pacheco CC, Oliveira P, Tamagnini P (2014) H2 production using cyanobacteria/cyanobacterial hydrogenases: from classical to synthetic biology approaches. In: Zannoni D, De Philippis R (eds) Microbial BioEnergy: hydrogen production. Springer, Dordrecht, pp 79–99

    Chapter  Google Scholar 

  • Pandey A, Chang J-S, Hallenbeck PC, Larroche C (2013) Biohydrogen. Elsevier Science Limited, Burlington/USA

    Google Scholar 

  • Peters JW, Fisher K, Dean DR (1995) Nitrogenase structure and function: a biochemical-genetic perspective. Annu Rev Microbiol 49:335–3663

    Article  Google Scholar 

  • Pinto F, van Elburg KA, Pacheco CC et al (2012) Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Microbiology 158:448–464

    Article  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2003) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  Google Scholar 

  • Schäfer C, Friedrich B, Lenz O (2013) Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha. Appl Environ Microbiol 79:5137–5145

    Article  Google Scholar 

  • Schummer J (2009) Nanotechnologie. Suhrkamp, Frankfurt a.M

    Google Scholar 

  • Shetty RP, Endy D, Knight TF (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5

    Article  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    Google Scholar 

  • Torzillo G, Pushparaj B, Masojidek J, Vonshak A (2003) Biological constraints in algal biotechnology. Biotechnol Bioprocess Eng 8:338–348

    Article  Google Scholar 

  • Trautmann D, Voss B, Wilde A et al (2012) Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res 19:435–448

    Article  Google Scholar 

  • Trewavas A (2006) A brief history of systems biology. Plant Cell 18:2420–2430

    Article  Google Scholar 

  • Verne J (1874) The mysterious island. Part II, chapter 11. Available via the Gutenberg project. http://www.gutenberg.org/ebooks/1268. Accessed 17 Mar 2015

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Eur J Biochem 107:4206–4272

    Google Scholar 

  • Weaver W (1970) Molecular biology: origin of the term. Science 170:581–582

    Article  Google Scholar 

  • Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413

    Article  Google Scholar 

  • Wünschiers R (2003) Photobiological hydrogen metabolism and hydrogenases from green algae. In: Nalwa HS (ed) Handbook of photochemistry and photobiology. American Scientific Publishers, Valencia/USA, pp 353–382

    Google Scholar 

  • Wünschiers R, Lindblad P (2003) Light-dependent hydrogen uptake and generation by cyanobacteria. In: Nalwa HS (ed) Handbook of photochemistry and photobiology. American Scientific Publishers, Valencia/USA, pp 295–328

    Google Scholar 

  • Züttel A, Borgschulte A, Schlapbach L (2008) Hydrogen as a future energy carrier. Wiley-VCH, Weinheim

    Book  Google Scholar 

Download references

Acknowledgements

The research described in this chapter has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 308518 (CyanoFactory). The author wishes to thank Kristin Hagen for her helpful comment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Röbbe Wünschiers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wünschiers, R. (2016). Making-of Synthetic Biology: The European CyanoFactory Research Consortium. In: Hagen, K., Engelhard, M., Toepfer, G. (eds) Ambivalences of Creating Life. Ethics of Science and Technology Assessment, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-21088-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21088-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21087-2

  • Online ISBN: 978-3-319-21088-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics