Skip to main content

Neural Regulation of Lung Development

  • Chapter
Stem Cells in the Lung

Abstract

The respiratory system, comprising the lungs, trachea, vasculature, and associated neural tissues, carries out gas exchange essential for terrestrial life. During early embryonic development, the lung primordium, originating from the ventral foregut endoderm, bifurcates ventrolaterally to form two primary lung buds. Within these developing buds, the lung mesoderm interacts with the endoderm to generate various lineages, including airway smooth muscle, vasculature, and pericytes. As these buds progressively invade their surroundings to form the characteristic tree-like architecture of the lungs, an extensive neuronal network develops concomitantly. This developing neural network will become essential to control breathing and relay sensation to the central nervous system. Here, we summarize what is known about the embryogenesis of intrinsic and extrinsic lung innervation and how it impacts on lung development. However, the precise ontogeny of the respiratory neuronal network and the signals by which it is regulated are, as yet, not fully elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morrisey EE, Hogan BLM (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18(1):8–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ornitz DM, Yin Y (2012) Signaling networks regulating development of the lower respiratory tract. Cold Spring Harb Perspect Biol 2012:4(5)

    Google Scholar 

  3. Rankin SA, Zorn AM (2014) Gene regulatory networks governing lung specification. J Cell Biochem 115(8):1343–1350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Development 141(3):502–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Grapin-Botton A, Melton (2000) Endoderm development: from patterning to organogenesis. Trends Genet 16(3):124–130

    Article  CAS  PubMed  Google Scholar 

  6. Warburton D et al (2000) The molecular basis of lung morphogenesis. Mech Dev 92(1):55–81

    Article  CAS  PubMed  Google Scholar 

  7. Kugler MC et al (2015) Sonic Hedgehog signaling in the lung—from development to disease. Am J Respir Cell Mol Biol 52(1):1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Warburton D et al (2005) Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 57(5 Pt 2):26R–37R

    Article  PubMed  Google Scholar 

  9. Litingtung Y et al (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20(1):58–61

    Article  CAS  PubMed  Google Scholar 

  10. Bellusci S et al (1997) Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124(1):53–63

    CAS  PubMed  Google Scholar 

  11. Burns AJ, Delalande JM (2005) Neural crest cell origin for intrinsic ganglia of the developing chicken lung. Dev Biol 277(1):63–79

    Article  CAS  PubMed  Google Scholar 

  12. Burns AJ, Thapar N, Barlow AJ (2008) Development of the neural crest-derived intrinsic innervation of the human lung. Am J Respir Cell Mol Biol 38(3):269–275

    Article  CAS  PubMed  Google Scholar 

  13. Billmyre KK, Hutson M, Klingensmith J (2015) One shall become two: separation of the esophagus and trachea from the common foregut tube. Dev Dyn 244(3):277–288

    Article  PubMed  Google Scholar 

  14. Metzger RJ et al (2008) The branching programme of mouse lung development. Nature 453(7196):745–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tollet J, Everett AW, Sparrow MP (2001) Spatial and temporal distribution of nerves, ganglia, and smooth muscle during the early pseudoglandular stage of fetal mouse lung development. Dev Dyn 221(1):48–60

    Article  CAS  PubMed  Google Scholar 

  16. Hines EA et al (2013) Establishment of smooth muscle and cartilage juxtaposition in the developing mouse upper airways. Proc Natl Acad Sci U S A 110(48):19444–19449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Weaver M, Batts L, Hogan BL (2003) Tissue interactions pattern the mesenchyme of the embryonic mouse lung. Dev Biol 258(1):169–184

    Article  CAS  PubMed  Google Scholar 

  18. Kumar ME et al (2014) Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution. Science 346(6211), 1258810

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Freem LJ et al (2010) The intrinsic innervation of the lung is derived from neural crest cells as shown by optical projection tomography in Wnt1-Cre; YFP reporter mice. J Anat 217(6):651–664

    Article  PubMed Central  PubMed  Google Scholar 

  20. Langsdorf A et al (2011) Neural crest cell origin and signals for intrinsic neurogenesis in the mammalian respiratory tract. Am J Respir Cell Mol Biol 44(3):293–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Aven L, Ai X (2013) Mechanisms of respiratory innervation during embryonic development. Organogenesis 9(3):194–198

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kalcheim C, Le Douarin NM (1999) The neural crest developmental and cell biology series: 36, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  23. Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30(1):31–48

    PubMed  Google Scholar 

  24. Goldstein AM, Hofstra RMW, Burns AJ (2013) Building a brain in the gut: development of the enteric nervous system. Clin Genet 83(4):307–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366(1):64–73

    Article  CAS  PubMed  Google Scholar 

  26. Avetisyan M, Schill EM, Heuckeroth RO (2015) Building a second brain in the bowel. J Clin Invest 125(3):899–907

    Article  PubMed  Google Scholar 

  27. Freem LJ et al (2012) Lack of organ specific commitment of vagal neural crest cell derivatives as shown by back-transplantation of GFP chicken tissues. Int J Dev Biol 56(4):245–254

    Article  PubMed  Google Scholar 

  28. Delalande JM et al (2014) Vascularisation is not necessary for gut colonisation by enteric neural crest cells. Dev Biol 385(2):220–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sparrow MP, Weichselbaum M, McCray PB (1999) Development of the innervation and airway smooth muscle in human fetal lung. Am J Respir Cell Mol Biol 20(4):550–560

    Article  CAS  PubMed  Google Scholar 

  30. Sparrow MP, Warwick SP, Everet AW (1995) Innervation and function of the distal airways in the developing bronchial tree of fetal pig lung. Am J Respir Cell Mol Biol 13(5):518–525

    Article  CAS  PubMed  Google Scholar 

  31. Brouns I et al (2009) Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 131(1):55–74

    Article  CAS  PubMed  Google Scholar 

  32. Myers AC (2001) Transmission in autonomic ganglia. Respir Physiol 125(1–2):99–111

    Article  CAS  PubMed  Google Scholar 

  33. Jiang Y, Liu MT, Gershon MD (2003) Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev Biol 258(2):364–384

    Article  CAS  PubMed  Google Scholar 

  34. Kirchgessner AL, Gershon MD (1990) Innervation of the pancreas by neurons in the gut. J Neurosci 10(5):1626–1642

    CAS  PubMed  Google Scholar 

  35. Sasselli V et al (2012) Evaluation of ES-derived neural progenitors as a potential source for cell replacement therapy in the gut. BMC Gastroenterol 12:81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Burton MD et al (1997) RET proto-oncogene is important for the development of respiratory CO2 sensitivity. J Auton Nerv Syst 63(3):137–143

    Article  CAS  PubMed  Google Scholar 

  37. Baloh RH et al (2000) The GDNF family ligands and receptors—implications for neural development. Curr Opin Neurobiol 10(1):103–110

    Article  CAS  PubMed  Google Scholar 

  38. Delalande JM et al (2008) The receptor tyrosine kinase RET regulates hindgut colonization by sacral neural crest cells. Dev Biol 313(1):279–292

    Article  CAS  PubMed  Google Scholar 

  39. Nagy N et al (2009) Endothelial cells promote migration and proliferation of enteric neural crest cells via beta1 integrin signaling. Dev Biol 330(2):263–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Burns AJ, Le Douarin NM (1998) The sacral neural crest contributes neurons and glia to the post- umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125(21):4335–4347

    CAS  PubMed  Google Scholar 

  41. Burns AJ, Le Douarin NM (2001) Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras. Anat Rec 262(1):16–28

    Article  CAS  PubMed  Google Scholar 

  42. Wang X et al (2011) Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology 141(3):992–1002; e1–6

    Article  PubMed  Google Scholar 

  43. Espinosa-Medina I et al (2014) Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science 345(6192):87–90

    Article  CAS  PubMed  Google Scholar 

  44. Delalande JM, Milla PJ, Burns AJ (2004) Hepatic nervous system development. Anat Rec 280(1):848–853

    Article  Google Scholar 

  45. Baker CV, Bronner-Fraser M (2001) Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232(1):1–61

    Article  CAS  PubMed  Google Scholar 

  46. Kwong K et al (2008) P2X2 receptors differentiate placodal vs. neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus. Am J Physiol Lung Cell Mol Physiol 295(5):L858–L865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Nassenstein C et al (2010) Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol 588(23):4769–4783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kummer W et al (1992) The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49(3):715–737

    Article  CAS  PubMed  Google Scholar 

  49. Radzikinas K et al (2011) A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. J Neurosci 31(43):15407–15415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Prakash YS, Martin RJ (2014) Brain-derived neurotrophic factor in the airways. Pharmacol Ther 143(1):74–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. García-Suárez O et al (2009) TrkB is necessary for the normal development of the lung. Respir Physiol Neurobiol 167(3):281–291

    Article  PubMed  CAS  Google Scholar 

  52. Ratcliffe E, D’Autreaux F, Gershon MD (2008) Laminin terminates the Netrin/DCC mediated attraction of vagal sensory axons. Dev Neurobiol 68(7):960–971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Jesudason EC (2009) Airway smooth muscle: an architect of the lung? Thorax 64(6):541–545

    Article  CAS  PubMed  Google Scholar 

  54. Schittny JC, Miserocchi G, Sparrow MP (2000) Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants. Am J Respir Cell Mol Biol 23(1):11–18

    Article  CAS  PubMed  Google Scholar 

  55. Sparrow M, Warwick SP, Mitchell HW (1994) Foetal airway motor tone in prenatal lung development of the pig. Eur Respir J 7(8):1416–1424

    Article  CAS  PubMed  Google Scholar 

  56. Unbekandt M et al (2008) Tracheal occlusion increases the rate of epithelial branching of embryonic mouse lung via the FGF10-FGFR2b-Sprouty2 pathway. Mech Dev 125(3–4):314–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Jesudason EC et al (2006) Peristalsis of airway smooth muscle is developmentally regulated and uncoupled from hypoplastic lung growth. Am J Physiol Lung Cell Mol Physiol 291(4):L559–L565

    Article  CAS  PubMed  Google Scholar 

  58. Featherstone NC et al (2006) Airway smooth muscle dysfunction precedes teratogenic congenital diaphragmatic hernia and may contribute to hypoplastic lung morphogenesis. Am J Respir Cell Mol Biol 35(5):571–578

    Article  CAS  PubMed  Google Scholar 

  59. Sanderson MJ et al (2008) Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity. Proc Am Thorac Soc 5(1):23–31

    Article  CAS  PubMed  Google Scholar 

  60. Bai Y, Zhang M, Sanderson MJ (2007) Contractility and Ca2+ Signaling of Smooth Muscle Cells in Different Generations of Mouse Airways. Am J Respir Cell Mol Biol 36(1):122–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586(21):5047–5061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ratcliffe EM, Farrar NR, Fox EA (2011) Development of the vagal innervation of the gut: steering the wandering nerve. Neurogastroenterol Motil 23(10):898–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Faure S et al (2015) Enteric neural crest cells regulate vertebrate stomach patterning and differentiation. Development 142(2):331–342

    Article  CAS  PubMed  Google Scholar 

  64. Xu K, Moghal N, Egan SE (2012) Notch signaling in lung development and disease. Adv Exp Med Biol 727:89–98

    Article  CAS  PubMed  Google Scholar 

  65. Cutz E, Jackson A (1999) Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 115(2):201–214

    Article  CAS  PubMed  Google Scholar 

  66. Van Lommel A (2001) Pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEB): chemoreceptors and regulators of lung development. Paediatr Respir Rev 2(2):171–176

    PubMed  Google Scholar 

  67. Adriaensen D et al (2006) Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors. J Appl Physiol 101(3):960–970

    Article  CAS  PubMed  Google Scholar 

  68. Cutz E et al (2013) Recent advances and controversies on the role of pulmonary neuroepithelial bodies as airway sensors. Semin Cell Dev Biol 24(1):40–50

    Article  PubMed  Google Scholar 

  69. Keith IM (1991) Calcitonin gene-related peptide and its mRNA in pulmonary neuroendocrine cells and ganglia. Histochemistry 96(4):311–315

    Article  CAS  PubMed  Google Scholar 

  70. Sorokin SP, Hoyt RF Jr, Shaffer MJ (1997) Ontogeny of neuroepithelial bodies: correlations with mitogenesis and innervation. Microsc Res Tech 37(1):43–61

    Article  CAS  PubMed  Google Scholar 

  71. Morimoto M et al (2012) Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 139(23):4365–4373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Reynolds SD et al (2000) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156(1):269–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Gillan JE et al (1989) Abnormal patterns of pulmonary neuroendocrine cells in victims of sudden infant death syndrome. Pediatrics 84(5):828–834

    CAS  PubMed  Google Scholar 

  74. Cutz E et al (2007) Pulmonary neuroendocrine cells and neuroepithelial bodies in sudden infant death syndrome: potential markers of airway chemoreceptor dysfunction. Pediatr Dev Pathol 10(2):106–116

    Article  CAS  PubMed  Google Scholar 

  75. Bower DV et al (2014) Airway branching has conserved needs for local parasympathetic innervation but not neurotransmission. BMC Biol 12(1):92

    Article  PubMed Central  PubMed  Google Scholar 

  76. Knox SM et al (2010) Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science 329(5999):1645–1647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Knox SM et al (2013) Parasympathetic stimulation improves epithelial organ regeneration. Nat Commun 4:1494

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Melnick M, Jaskoll T (2000) Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. Crit Rev Oral Biol Med 11(2):199–215

    Article  CAS  PubMed  Google Scholar 

  79. Patel VN, Rebustini IT, Hoffman MP (2006) Salivary gland branching morphogenesis. Differentiation 74(7):349–364

    Article  CAS  PubMed  Google Scholar 

  80. Rand CM, Carroll MS, Weese-Mayer DE (2014) Congenital central hypoventilation syndrome: a neurocristopathy with disordered respiratory control and autonomic regulation. Clin Chest Med 35(3):535–545

    Article  PubMed  Google Scholar 

  81. Berry-Kravis EM et al (2006) Congenital central hypoventilation syndrome: PHOX2B mutations and phenotype. Am J Respir Crit Care Med 174(10):1139–1144

    Article  CAS  PubMed  Google Scholar 

  82. Weese-Mayer DE et al (2009) Congenital central hypoventilation syndrome from past to future: model for translational and transitional autonomic medicine. Pediatr Pulmonol 44(6):521–535

    Article  PubMed  Google Scholar 

  83. Weese-Mayer DE, Berry-Kravis EM (2004) Genetics of congenital central hypoventilation syndrome: lessons from a seemingly orphan disease. Am J Respir Crit Care Med 170(1):16–21

    Article  PubMed  Google Scholar 

  84. Amiel J et al (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33(4):459–461

    Article  CAS  PubMed  Google Scholar 

  85. Pattyn A et al (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124(20):4065–4075

    CAS  PubMed  Google Scholar 

  86. Pattyn A et al (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399(6734):366–370

    Article  CAS  PubMed  Google Scholar 

  87. Dauger S et al (2003) Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 130(26):6635–6642

    Article  CAS  PubMed  Google Scholar 

  88. Onimaru H, Ikeda K, Kawakami K (2008) CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat. J Neurosci 28(48):12845–12850

    Article  CAS  PubMed  Google Scholar 

  89. de Pontual L et al (2006) Mutations of the RET gene in isolated and syndromic Hirschsprung’s disease in human disclose major and modifier alleles at a single locus. J Med Genet 43(5):419–423

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Kipanyula MJ et al (2014) Signaling pathways bridging fate determination of neural crest cells to glial lineages in the developing peripheral nervous system. Cell Signal 26(4):673–682

    Article  CAS  PubMed  Google Scholar 

  91. Sauka-Spengler T, Bronner-Fraser M (2008) A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9(7):557–568

    Article  CAS  PubMed  Google Scholar 

  92. Badner JA, Chakravarti A (1990) Waardenburg syndrome and Hirschsprung disease: evidence for pleiotropic effects of a single dominant gene. Am J Med Genet 35(1):100–104

    Article  CAS  PubMed  Google Scholar 

  93. Shah KN et al (1981) White forelock, pigmentary disorder of irides, and long segment Hirschsprung disease: possible variant of Waardenburg syndrome. J Pediatr 99(3):432–435

    Article  CAS  PubMed  Google Scholar 

  94. Hakami RM et al (2006) Genetic evidence does not support direct regulation of EDNRB by SOX10 in migratory neural crest and the melanocyte lineage. Mech Dev 123(2):124–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18(1):60–64

    Article  CAS  PubMed  Google Scholar 

  96. Walters LC et al (2010) Genetic background impacts developmental potential of enteric neural crest-derived progenitors in the Sox10Dom model of Hirschsprung disease. Human Mol Genet 19(22):4353–4372

    Article  CAS  Google Scholar 

  97. Freem LJ (2011) The development of the neural crest-derived intrinsic innervation of the lung. University College, London

    Google Scholar 

  98. Lindsay EA et al (2001) Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410(6824):97–101

    Article  CAS  PubMed  Google Scholar 

  99. Chapman DL et al (1996) Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev Dyn 206(4):379–390

    Article  CAS  PubMed  Google Scholar 

  100. Calmont A et al (2009) Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136(18):3173–3183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Epstein JA (2001) Developing models of DiGeorge syndrome. Trends Genet 17(10):S13–S17

    Article  CAS  PubMed  Google Scholar 

  102. Huang RY, Shapiro NL (2000) Structural airway anomalies in patients with DiGeorge syndrome: a current review. Am J Otolaryngol 21(5):326–330

    Article  CAS  PubMed  Google Scholar 

  103. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27(3):286–291

    Article  CAS  PubMed  Google Scholar 

  104. Kochilas L et al (2002) The role of neural crest during cardiac development in a mouse model of DiGeorge syndrome. Dev Biol 251(1):157–166

    Article  CAS  PubMed  Google Scholar 

  105. Vitelli F et al (2002) Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet 11(8):915–922

    Article  CAS  PubMed  Google Scholar 

  106. Calmont A et al (2010) Absence of the vagus nerve in the stomach of Tbx1−/− mutant mice. Neurogastroenterol Motil 23(2):125–130

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Burns Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burns, A.J., Freem, L.J., Delalande, JM. (2015). Neural Regulation of Lung Development. In: Bertoncello, I. (eds) Stem Cells in the Lung. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21082-7_4

Download citation

Publish with us

Policies and ethics