Skip to main content

Extracellular Matrix Specification of Regenerative Cells in the Adult Lung

  • Chapter

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Specialised extracellular matrix (ECM) and cell niches within the adult lung are thought to be important for the maintenance and propagation of stem cell progenitor pools required for lung regeneration and repair. The meshwork of proteins that comprise the ECM not only provide structural support and rigidity, but also regulate cellular activities within the tissue microenvironment by virtue of the composition and stiffness of the ECM to which they are exposed. The ECM composition and structural assembly is altered in chronic lung disease impacting on the potential for stem cell regeneration and thereby possibly contributing to disease pathologies. The use of the ECM from decellularised tissue as a scaffold for regenerating a healthy lung for transplantation purposes is an exciting and challenging new frontier in ECM biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hynes RO, Naba A (2012) Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4(1):a004903

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Roberts CR, Walker DC, Schellenberg RR (2002) Extracellular matrix. Clin Allergy Immunol 16:143–178

    CAS  PubMed  Google Scholar 

  3. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(Pt 24):4195–4200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Tran T, Halayko AJ (2007) Extracellular matrix and airway smooth muscle interactions: a target for modulating airway wall remodelling and hyperresponsiveness? Can J Physiol Pharmacol 85(7):666–671

    Article  CAS  PubMed  Google Scholar 

  5. Raghavan S, Bitar KN (2014) The influence of extracellular matrix composition on the differentiation of neuronal subtypes in tissue engineered innervated intestinal smooth muscle sheets. Biomaterials 35(26):7429–7440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pelosi P, Rocco PRM, Negrini D, Passi A (2007) The extracellular matrix of the lung and its role in edema formation. An Acad Bras Cienc 79(2):285–297

    Article  CAS  PubMed  Google Scholar 

  7. Marastoni S, Ligresti G, Lorenzon E, Colombatti A, Mongiat M (2008) Extracellular matrix: a matter of life and death. Connect Tissue Res 49(3):203–206

    Article  CAS  PubMed  Google Scholar 

  8. Negrini D, Passi A, de Luca G, Miserocchi G (1998) Role of matrix macromolecules in controlling lung fluid balance: transition from a dry tissue to edema. In: Matalon S, Sznajder JI (eds) Acute respiratory distress syndrome: cellular and molecular mechanisms and clinical management, vol 297. Plenum, New York, pp 65–68

    Chapter  Google Scholar 

  9. Suki B, Ito S, Stamenovic D, Lutchen KR, Ingenito EP (2005) Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol 98(5):1892–1899

    Article  PubMed  Google Scholar 

  10. Negrini D, Tenstad O, Passi A, Wiig H (2006) Differential degradation of matrix proteoglycans and edema development in rabbit lung. Am J Physiol Lung Cell Mol Physiol 290(3):L470–L477

    Article  CAS  PubMed  Google Scholar 

  11. Papakonstantinou E, Karakiulakis G (2009) The ‘sweet’ and ‘bitter’ involvement of glycosaminoglycans in lung diseases: pharmacotherapeutic relevance. Br J Pharmacol 157(7):1111–1127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Dunsmore SE (2008) Treatment of COPD: a matrix perspective. Int J Chron Obstruct Pulmon Dis 3(1):113–122

    PubMed Central  PubMed  Google Scholar 

  13. Roberts CR, Rains JK, Pare PD, Walker DC, Wiggs B, Bert JL (1998) Ultrastructure and tensile properties of human tracheal cartilage. J Biomech 31(1):81–86

    Article  CAS  PubMed  Google Scholar 

  14. Kim HY, Nelson CM (2012) Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis 8(2):56–64

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kumar ME, Bogard PE, Espinoza FH, Menke DB, Kingsley DM, Krasnow MA (2014) Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution. Science 346(6211):1258810

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Matsuo I, Kimura-Yoshida C (2014) Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis. Philos Trans R Soc Lond B Biol Sci 369(1657)

    Google Scholar 

  17. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. McGowan SE (1992) Extracellular matrix and the regulation of lung development and repair. FASEB J 6(11):2895–2904

    CAS  PubMed  Google Scholar 

  19. Shannon JM (1994) Induction of alveolar type II cell differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev Biol 166(2):600–614

    Article  CAS  PubMed  Google Scholar 

  20. Antunes MA et al (2009) Different strains of mice present distinct lung tissue mechanics and extracellular matrix composition in a model of chronic allergic asthma. Respir Physiol Neurobiol 165(2–3):202–207

    Article  CAS  PubMed  Google Scholar 

  21. Freyer AM, Johnson SR, Hall IP (2001) Effects of growth factors and extracellular matrix on survival of human airway smooth muscle cells. Am J Respir Cell Mol Biol 25(5):569–576

    Article  CAS  PubMed  Google Scholar 

  22. Hirst SJ, Twort CH, Lee TH (2000) Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am J Respir Cell Mol Biol 23(3):335–344

    Article  CAS  PubMed  Google Scholar 

  23. Tran T et al (2013) Laminin drives survival signals to promote a contractile smooth muscle phenotype and airway hyperreactivity. FASEB J 27(10):3991–4003

    Article  CAS  PubMed  Google Scholar 

  24. Bonacci JV, Harris T, Wilson JW, Stewart AG (2003) Collagen-induced resistance to glucocorticoid anti-mitogenic actions: a potential explanation of smooth muscle hyperplasia in the asthmatic remodelled airway. Br J Pharmacol 138(7):1203–1206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Parameswaran K, Radford K, Zuo J, Janssen LJ, O’Byrne PM, Cox PG (2004) Extracellular matrix regulates human airway smooth muscle cell migration. Eur Respir J 24(4):545–551

    Article  CAS  PubMed  Google Scholar 

  26. Chan V et al (2006) Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. Am J Respir Crit Care Med 174(4):379–385

    Article  CAS  PubMed  Google Scholar 

  27. Johnson PR et al (2004) Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism. J Allergy Clin Immunol 113(4):690–696

    Article  CAS  PubMed  Google Scholar 

  28. Lau JY et al (2010) Fibulin-1 is increased in asthma–a novel mediator of airway remodeling? PLoS One 5(10)

    Google Scholar 

  29. Jarvelainen H, Sainio A, Koulu M, Wight TN, Penttinen R (2009) Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 61(2):198–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840(8):2506–2519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mih JD, Marinkovic A, Liu F, Sharif AS, Tschumperlin DJ (2012) Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J Cell Sci 125(Pt 24):5974–5983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Liu F et al (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190(4):693–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gibson GJ, Pride NB (1976) Lung distensibility. The static pressure-volume curve of the lungs and its use in clinical assessment. Br J Dis Chest 70(3):143–184

    Article  CAS  PubMed  Google Scholar 

  34. Cardoso WV, Whitsett JA (2008) Resident cellular components of the lung: developmental aspects. Proc Am Thorac Soc 5(7):767–771

    Article  PubMed Central  PubMed  Google Scholar 

  35. Franks TJ et al (2008) Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function. Proc Am Thorac Soc 5(7):763–766

    Article  PubMed  Google Scholar 

  36. Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18(1):8–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161(1):173–182

    Article  PubMed Central  PubMed  Google Scholar 

  38. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004) Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164(2):577–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rawlins EL, Clark CP, Xue Y, Hogan BL (2009) The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136(22):3741–3745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Rock JR et al (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106(31):12771–12775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Spees JL et al (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci U S A 100(5):2397–2402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Camargo FD, Chambers SM, Goodell MA (2004) Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif 37(1):55–65

    Article  CAS  PubMed  Google Scholar 

  43. Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116(5):639–648

    Article  CAS  PubMed  Google Scholar 

  44. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004) In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol 286(4):L643–L649

    Article  CAS  PubMed  Google Scholar 

  45. Jiang Y et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49

    Article  CAS  PubMed  Google Scholar 

  46. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  47. Volckaert T, De Langhe S (2014) Lung epithelial stem cells and their niches: Fgf10 takes center stage. Fibrogenesis Tissue Repair 7:8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Urciuolo A et al (2013) Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun 4:1964

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Rudnicki MA (2013) Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12(1):75–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yamashita YM, Fuller MT, Jones DL (2005) Signaling in stem cell niches: lessons from the Drosophila germline. J Cell Sci 118(Pt 4):665–672

    Article  CAS  PubMed  Google Scholar 

  51. Frye M, Gardner C, Li ER, Arnold I, Watt FM (2003) Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 130(12):2793–2808

    Article  CAS  PubMed  Google Scholar 

  52. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12)

    Google Scholar 

  53. Sever M, Mammadov B, Guler MO, Tekinay AB (2014) Tenascin-C mimetic peptide nanofibers direct stem cell differentiation to osteogenic lineage. Biomacromolecules 15(12):4480–4487

    Article  CAS  PubMed  Google Scholar 

  54. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  55. Gilbert PM et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272):433–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Beers MF, Morrisey EE (2011) The three R’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 121(6):2065–2073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. King TE Jr, Pardo A, Selman M (2011) Idiopathic pulmonary fibrosis. Lancet 378(9807):1949–1961

    Article  PubMed  Google Scholar 

  59. Selman M, Pardo A, Kaminski N (2008) Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS Med 5(3):e62

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Jeffery PK (2001) Remodeling in asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 164(10 Pt 2):S28–S38

    Article  CAS  PubMed  Google Scholar 

  61. Larsen NP, Paddock R, Alexander HL (1961) Historical document, 1922. Bronchial asthma and allied conditions. Clinical and immunological observations. Ann Allergy 19:771–778

    CAS  PubMed  Google Scholar 

  62. Araujo BB et al (2008) Extracellular matrix components and regulators in the airway smooth muscle in asthma. Eur Respir J 32(1):61–69

    Article  CAS  PubMed  Google Scholar 

  63. James AL, Maxwell PS, Pearce-Pinto G, Elliot JG, Carroll NG (2002) The relationship of reticular basement membrane thickness to airway wall remodeling in asthma. Am J Respir Crit Care Med 166(12):1590–1595

    Article  PubMed  Google Scholar 

  64. Bai TR, Cooper J, Koelmeyer T, Pare PD, Weir TD (2000) The effect of age and duration of disease on airway structure in fatal asthma. Am J Respir Crit Care Med 162(2 Pt 1):663–669

    Article  CAS  PubMed  Google Scholar 

  65. Roberts CR, Burke AK (1998) Remodelling of the extracellular matrix in asthma: proteoglycan synthesis and degradation. Can Respir J 5(1):48–50

    CAS  PubMed  Google Scholar 

  66. Amin K, Janson C, Boman G, Venge P (2005) The extracellular deposition of mast cell products is increased in hypertrophic airways smooth muscles in allergic asthma but not in nonallergic asthma. Allergy 60(10):1241–1247

    Article  CAS  PubMed  Google Scholar 

  67. Amin K et al (2000) Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR group. Am J Respir Crit Care Med 162(6):2295–2301

    Article  CAS  PubMed  Google Scholar 

  68. Altraja A et al (1996) Expression of laminins in the airways in various types of asthmatic patients: a morphometric study. Am J Respir Cell Mol Biol 15(4):482–488

    Article  CAS  PubMed  Google Scholar 

  69. Huang J, Olivenstein R, Taha R, Hamid Q, Ludwig M (1999) Enhanced proteoglycan deposition in the airway wall of atopic asthmatics. Am J Respir Crit Care Med 160(2):725–729

    Article  CAS  PubMed  Google Scholar 

  70. Pini L et al (2007) Differences in proteoglycan deposition in the airways of moderate and severe asthmatics. Eur Respir J 29(1):71–77

    Article  CAS  PubMed  Google Scholar 

  71. de Medeiros Matsushita M et al (2005) Airway proteoglycans are differentially altered in fatal asthma. J Pathol 207(1):102–110

    Article  PubMed  CAS  Google Scholar 

  72. Vignola AM, Kips J, Bousquet J (2000) Tissue remodeling as a feature of persistent asthma. J Allergy Clin Immunol 105(6 Pt 1):1041–1053

    Article  CAS  PubMed  Google Scholar 

  73. Laitinen A, Altraja A, Kampe M, Linden M, Virtanen I, Laitinen LA (1997) Tenascin is increased in airway basement membrane of asthmatics and decreased by an inhaled steroid. Am J Respir Crit Care Med 156(3 Pt 1):951–958

    Article  CAS  PubMed  Google Scholar 

  74. Seow CY, Schellenberg RR, Pare PD (1998) Structural and functional changes in the airway smooth muscle of asthmatic subjects. Am J Respir Crit Care Med 158(5 Pt 3):S179–S186

    Article  CAS  PubMed  Google Scholar 

  75. Bousquet J et al (1992) Asthma: a disease remodeling the airways. Allergy 47(1):3–11

    Article  CAS  PubMed  Google Scholar 

  76. Burgess JK (2009) The role of the extracellular matrix and specific growth factors in the regulation of inflammation and remodelling in asthma. Pharmacol Ther 122(1):19–29

    Article  CAS  PubMed  Google Scholar 

  77. Westergren-Thorsson G, Chakir J, Lafreniere-Allard MJ, Boulet LP, Tremblay GM (2002) Correlation between airway responsiveness and proteoglycan production by bronchial fibroblasts from normal and asthmatic subjects. Int J Biochem Cell Biol 34(10):1256–1267

    Article  CAS  PubMed  Google Scholar 

  78. Bergeron C, Boulet LP (2006) Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation. Chest 129(4):1068–1087

    Article  CAS  PubMed  Google Scholar 

  79. James AL, Wenzel S (2007) Clinical relevance of airway remodelling in airway diseases. Eur Respir J 30(1):134–155

    Article  CAS  PubMed  Google Scholar 

  80. Barnes PJ (2004) Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 56(4):515–548

    Article  CAS  PubMed  Google Scholar 

  81. Abraham T, Hogg J (2010) Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence. J Struct Biol 171(2):189–196

    Article  PubMed  Google Scholar 

  82. Lang MR, Fiaux GW, Gillooly M, Stewart JA, Hulmes DJ, Lamb D (1994) Collagen content of alveolar wall tissue in emphysematous and non-emphysematous lungs. Thorax 49(4):319–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Vlahovic G, Russell ML, Mercer RR, Crapo JD (1999) Cellular and connective tissue changes in alveolar septal walls in emphysema. Am J Respir Crit Care Med 160(6):2086–2092

    Article  CAS  PubMed  Google Scholar 

  84. Bosken CH, Wiggs BR, Pare PD, Hogg JC (1990) Small airway dimensions in smokers with obstruction to airflow. Am Rev Respir Dis 142(3):563–570

    Article  CAS  PubMed  Google Scholar 

  85. Cosio M et al (1978) The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med 298(23):1277–1281

    Article  CAS  PubMed  Google Scholar 

  86. Snider GL (1986) Chronic obstructive pulmonary disease—a continuing challenge. Am Rev Respir Dis 133(5):942–944

    CAS  PubMed  Google Scholar 

  87. Snider GL (1986) Experimental studies on emphysema and chronic bronchial injury. Eur J Respir Dis Suppl 146:17–35

    CAS  PubMed  Google Scholar 

  88. Saetta M, Turato G, Maestrelli P, Mapp CE, Fabbri LM (2001) Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163(6):1304–1309

    Article  CAS  PubMed  Google Scholar 

  89. Maestrelli P, Saetta M, Mapp CE, Fabbri LM (2001) Remodeling in response to infection and injury. Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164(10 Pt 2):S76–S80

    Article  CAS  PubMed  Google Scholar 

  90. Saetta M et al (1985) Loss of alveolar attachments in smokers. A morphometric correlate of lung function impairment. Am Rev Respir Dis 132(4):894–900

    CAS  PubMed  Google Scholar 

  91. Merrilees MJ, Ching PS, Beaumont B, Hinek A, Wight TN, Black PN (2008) Changes in elastin, elastin binding protein and versican in alveoli in chronic obstructive pulmonary disease. Respir Res 9:41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. van Straaten JF et al (1999) Proteoglycan changes in the extracellular matrix of lung tissue from patients with pulmonary emphysema. Mod Pathol 12(7):697–705

    PubMed  Google Scholar 

  93. Hallgren O et al (2010) Altered fibroblast proteoglycan production in COPD. Respir Res 11:55

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Zandvoort A, Postma DS, Jonker MR, Noordhoek JA, Vos JT, Timens W (2008) Smad gene expression in pulmonary fibroblasts: indications for defective ECM repair in COPD. Respir Res 9:83

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Liesker JJ, Ten Hacken NH, Zeinstra-Smith M, Rutgers SR, Postma DS, Timens W (2009) Reticular basement membrane in asthma and COPD: similar thickness, yet different composition. Int J Chron Obstruct Pulmon Dis 4:127–135

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Lacoste JY et al (1993) Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J Allergy Clin Immunol 92(4):537–548

    Article  CAS  PubMed  Google Scholar 

  97. Chanez P et al (1997) Corticosteroid reversibility in COPD is related to features of asthma. Am J Respir Crit Care Med 155(5):1529–1534

    Article  CAS  PubMed  Google Scholar 

  98. Soltani A et al (2010) Basement membrane and vascular remodelling in smokers and chronic obstructive pulmonary disease: a cross-sectional study. Respir Res 11:105

    Article  PubMed Central  PubMed  Google Scholar 

  99. Kranenburg AR et al (2006) Enhanced bronchial expression of extracellular matrix proteins in chronic obstructive pulmonary disease. Am J Clin Pathol 126(5):725–735

    Article  CAS  PubMed  Google Scholar 

  100. Tjin G, Xu P, Kable SH, Kable EP, Burgess JK (2014) Quantification of collagen I in airway tissues using second harmonic generation. J Biomed Opt 19(3):36005

    Article  PubMed  Google Scholar 

  101. Basset F, Ferrans VJ, Soler P, Takemura T, Fukuda Y, Crystal RG (1986) Intraluminal fibrosis in interstitial lung disorders. Am J Pathol 122(3):443–461

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Molina-Molina M, Vicens V, Estany S (2010) New aspects of idiopathic pulmonary fibrosis. Clin Pulm Med 17(4):170–176

    Article  Google Scholar 

  103. Burkhardt A (1989) Alveolitis and collapse in the pathogenesis of pulmonary fibrosis. Am Rev Respir Dis 140(2):513–524

    Article  CAS  PubMed  Google Scholar 

  104. Fukuda Y, Ishizaki M, Masuda Y, Kimura G, Kawanami O, Masugi Y (1987) The role of intraalveolar fibrosis in the process of pulmonary structural remodeling in patients with diffuse alveolar damage. Am J Pathol 126(1):171–182

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Katzenstein AL (1985) Pathogenesis of “fibrosis” in interstitial pneumonia: an electron microscopic study. Hum Pathol 16(10):1015–1024

    Article  CAS  PubMed  Google Scholar 

  106. Kuhn C 3rd, Boldt J, King TE Jr, Crouch E, Vartio T, McDonald JA (1989) An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 140(6):1693–1703

    Article  PubMed  Google Scholar 

  107. Ffrench-Constant C, Van de Water L, Dvorak HF, Hynes RO (1989) Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol 109(2):903–914

    Article  CAS  PubMed  Google Scholar 

  108. Scharffetter K et al (1989) Localization of collagen alpha 1(I) gene expression during wound healing by in situ hybridization. J Invest Dermatol 93(3):405–412

    Article  CAS  PubMed  Google Scholar 

  109. Welch MP, Odland GF, Clark RA (1990) Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol 110(1):133–145

    Article  CAS  PubMed  Google Scholar 

  110. Kuhn C, McDonald JA (1991) The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 138(5):1257–1265

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Ward PA, Hunninghake GW (1998) Lung inflammation and fibrosis. Am J Respir Crit Care Med 157(4 Pt 2):S123–S129

    Article  CAS  PubMed  Google Scholar 

  112. Hay ED (ed) (1981) Cell biology of extracellular matrix. Plenum, New York

    Google Scholar 

  113. Hay ED (ed) (1991) Cell biology of extracellular matrix, 2nd edn. Plenum, New York

    Google Scholar 

  114. Mecham R (2011) The extracellular matrix: an overview. Springer, Berlin

    Book  Google Scholar 

  115. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Zhang Y et al (2009) Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 30(23–24):4021–4028

    Article  CAS  PubMed  Google Scholar 

  117. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115

    Article  CAS  PubMed  Google Scholar 

  118. Hess MW, Pfaller K, Ebner HL, Beer B, Hekl D, Seppi T (2010) 3D versus 2D cell culture implications for electron microscopy. Methods Cell Biol 96:649–670

    Article  PubMed  Google Scholar 

  119. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  CAS  PubMed  Google Scholar 

  120. Rommerswinkel N, Niggemann B, Keil S, Zanker KS, Dittmar T (2014) Analysis of Cell migration within a three-dimensional collagen matrix. J Vis Exp 92:e51963

    PubMed  Google Scholar 

  121. Xiao Z, Conrads TP, Beck GR, Veenstra TD (2008) Analysis of the extracellular matrix and secreted vesicle proteomes by mass spectrometry. Methods Mol Biol 428:231–244

    Article  CAS  PubMed  Google Scholar 

  122. Wang X, Han J, Yang J, Pan J, Borchers CH (2015) Matrix coating assisted by an electric field (MCAEF) for enhanced tissue imaging by MALDI-MS. Chem Sci 6:729–738

    Article  CAS  Google Scholar 

  123. Gillette BM, Jensen JA, Wang M, Tchao J, Sia SK (2010) Dynamic hydrogels: switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv Mater 22(6):686–691

    Article  CAS  PubMed  Google Scholar 

  124. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Prasertsung I, Kanokpanont S, Bunaprasert T, Thanakit V, Damrongsakkul S (2008) Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater 85(1):210–219

    Article  PubMed  CAS  Google Scholar 

  126. Reing JE et al (2010) The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 31(33):8626–8633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Deeken CR et al (2011) Method of preparing a decellularized porcine tendon using tributyl phosphate. J Biomed Mater Res B Appl Biomater 96(2):199–206

    Article  CAS  PubMed  Google Scholar 

  128. Brown BN et al (2011) Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods 17(4):411–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Freytes DO, Stoner RM, Badylak SF (2008) Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J Biomed Mater Res B Appl Biomater 84(2):408–414

    Article  PubMed  CAS  Google Scholar 

  130. Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A (2010) Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 16(8):2581–2591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Bolland F et al (2007) Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 28(6):1061–1070

    Article  CAS  PubMed  Google Scholar 

  132. Remlinger NT et al (2010) Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials 31(13):3520–3526

    Article  CAS  PubMed  Google Scholar 

  133. Meyer SR, Chiu B, Churchill TA, Zhu L, Lakey JR, Ross DB (2006) Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A 79(2):254–262

    Article  PubMed  CAS  Google Scholar 

  134. Yang B et al (2010) Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods 16(5):1201–1211

    Article  CAS  PubMed  Google Scholar 

  135. Zhou J et al (2010) Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31(9):2549–2554

    Article  CAS  PubMed  Google Scholar 

  136. Flynn LE (2010) The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials 31(17):4715–4724

    Article  CAS  PubMed  Google Scholar 

  137. Wicha MS, Lowrie G, Kohn E, Bagavandoss P, Mahn T (1982) Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci U S A 79(10):3213–3217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Stern MM et al (2009) The influence of extracellular matrix derived from skeletal muscle tissue on the proliferation and differentiation of myogenic progenitor cells ex vivo. Biomaterials 30(12):2393–2399

    Article  CAS  PubMed  Google Scholar 

  139. Yang M, Chen CZ, Wang XN, Zhu YB, Gu YJ (2009) Favorable effects of the detergent and enzyme extraction method for preparing decellularized bovine pericardium scaffold for tissue engineered heart valves. J Biomed Mater Res B Appl Biomater 91(1):354–361

    Article  PubMed  CAS  Google Scholar 

  140. Ott HC et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    Article  CAS  PubMed  Google Scholar 

  141. Uygun BE et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16(7):2207–2216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Du L, Wu X, Pang K, Yang Y (2011) Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold. Br J Ophthalmol 95(3):410–414

    Article  PubMed  Google Scholar 

  144. Rieder E et al (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127(2):399–405

    Article  PubMed  Google Scholar 

  145. Kasimir MT et al (2003) Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs 26(5):421–427

    CAS  PubMed  Google Scholar 

  146. Funamoto S et al (2010) The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31(13):3590–3595

    Article  CAS  PubMed  Google Scholar 

  147. Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de Groot AC, DeRuiter MC (2005) Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 27(4):566–571

    Article  PubMed  Google Scholar 

  148. Sasaki S et al (2009) In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis 15:2022–2028

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Sellaro TL et al (2010) Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng Part A 16(3):1075–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Hudson TW, Liu SY, Schmidt CE (2004) Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 10(9–10):1346–1358

    Article  CAS  PubMed  Google Scholar 

  151. Wagner DE et al (2014) Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials 35(9):2664–2679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Wagner DE et al (2014) Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 35(10):3281–3297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Petersen TH et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Chen RN, Ho HO, Tsai YT, Sheu MT (2004) Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25(13):2679–2686

    Article  CAS  PubMed  Google Scholar 

  155. Lumpkins SB, Pierre N, McFetridge PS (2008) A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater 4(4):808–816

    Article  PubMed  Google Scholar 

  156. Ott HC et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–933

    Article  CAS  PubMed  Google Scholar 

  157. Cortiella J et al (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16(8):2565–2580

    Article  CAS  PubMed  Google Scholar 

  158. Cebotari S et al (2010) Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs 34(3):206–210

    Article  PubMed  Google Scholar 

  159. Gui L, Chan SA, Breuer CK, Niklason LE (2010) Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods 16(2):173–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Conconi MT et al (2005) Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 18(6):727–734

    Article  CAS  PubMed  Google Scholar 

  161. Gilpin SE et al (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308

    Article  PubMed  Google Scholar 

  162. Song JJ et al (2011) Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg 92(3):998–1005; discussion 1005–1006

    Article  PubMed  Google Scholar 

  163. Montoya CV, McFetridge PS (2009) Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue Eng Part C Methods 15(2):191–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Hashimoto Y et al (2010) Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 31(14):3941–3948

    Article  CAS  PubMed  Google Scholar 

  165. Schenke-Layland K et al (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 143(3):201–208

    Article  CAS  PubMed  Google Scholar 

  166. Hopkinson A et al (2008) Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Eng Part C Methods 14(4):371–381

    Article  CAS  PubMed  Google Scholar 

  167. Lehr EJ et al (2011) Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J Thorac Cardiovasc Surg 141(4):1056–1062

    Article  PubMed  Google Scholar 

  168. Phillips M, Maor E, Rubinsky B (2010) Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng 132(9):091003

    Article  PubMed  Google Scholar 

  169. Sano MB, Neal RE 2nd, Garcia PA, Gerber D, Robertson J, Davalos RV (2010) Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online 9:83

    Article  PubMed Central  PubMed  Google Scholar 

  170. Baiguera S et al (2010) Tissue engineered human tracheas for in vivo implantation. Biomaterials 31(34):8931–8938

    Article  CAS  PubMed  Google Scholar 

  171. Macchiarini P et al (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030

    Article  PubMed  Google Scholar 

  172. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Martinu T, Chen DF, Palmer SM (2009) Acute rejection and humoral sensitization in lung transplant recipients. Proc Am Thorac Soc 6(1):54–65

    Article  PubMed Central  PubMed  Google Scholar 

  174. Sharples LD, McNeil K, Stewart S, Wallwork J (2002) Risk factors for bronchiolitis obliterans: a systematic review of recent publications. J Heart Lung Transplant 21(2):271–281

    Article  PubMed  Google Scholar 

  175. Orens JB, Garrity ER Jr (2009) General overview of lung transplantation and review of organ allocation. Proc Am Thorac Soc 6(1):13–19

    Article  PubMed  Google Scholar 

  176. Ma R et al (2013) Structural integrity, ECM components and immunogenicity of decellularized laryngeal scaffold with preserved cartilage. Biomaterials 34(7):1790–1798

    Article  CAS  PubMed  Google Scholar 

  177. Tsuchiya T, Sivarapatna A, Rocco K, Nanashima A, Nagayasu T, Niklason LE (2014) Future prospects for tissue engineered lung transplantation: decellularization and recellularization-based whole lung regeneration. Organogenesis 10(2):196–207

    Article  PubMed Central  PubMed  Google Scholar 

  178. Jensen T et al (2012) A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation. Tissue Eng Part C Methods 18(8):632–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Lecht S et al (2014) Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells. Biomaterials 35(10):3252–3262

    Article  CAS  PubMed  Google Scholar 

  180. Sun H et al (2014) Fibroblast engraftment in the decellularized mouse lung occurs via a beta1-integrin-dependent, FAK-dependent pathway that is mediated by ERK and opposed by AKT. Am J Physiol Lung Cell Mol Physiol 306(6):L463–L475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Daly AB et al (2012) Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A 18(1–2):1–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Wallis JM et al (2012) Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods 18(6):420–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. O’Neill JD et al (2013) Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 96(3):1046–1055; discussion 1055–1046

    Article  PubMed Central  PubMed  Google Scholar 

  184. Bonvillain RW et al (2012) A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng Part A 18(23–24):2437–2452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Pati F et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janette K. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burgess, J.K., Tjin, G. (2015). Extracellular Matrix Specification of Regenerative Cells in the Adult Lung. In: Bertoncello, I. (eds) Stem Cells in the Lung. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21082-7_11

Download citation

Publish with us

Policies and ethics