Skip to main content

Diversity of Inner Ears in Fishes: Possible Contribution Towards Hearing Improvements and Evolutionary Considerations

  • Chapter
Fish Hearing and Bioacoustics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 877))

Abstract

Fishes have evolved the largest diversity of inner ears among vertebrates. While G. Retzius introduced us to the diversity of the gross morphology of fish ears in the late nineteenth century, it was A. N. Popper who unraveled the large variety of the fine structure during the last four decades. Modifications of the basic inner ear structure—consisting of three semicircular canals and their sensory epithelia, the cristae and three otolithic end organs (utricle, saccule, lagena) including the maculae—mainly relate to the saccule and lagena and the respective sensory epithelia, the macula sacculi and macula lagenae. Despite the profound morphological knowledge of inner ears and the morphological variability, the functional significance of this diversity is still largely unknown. The aims of this review are therefore twofold. First it provides an update of the state of the art of inner ear diversity in bony fishes. Second it summarizes and discusses hypotheses on the evolution of this diversity as well as formulates open questions and promising approaches to tackle these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LA (1940) Some characteristics otoliths of American Ostariophysi. J Morphol 66:497–527

    Article  Google Scholar 

  • Amoser S, Ladich F (2005) Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats? J Exp Biol 208(18):3533–3542

    Article  PubMed  Google Scholar 

  • Arch VS, Simmons DD, Quiñones PM, Feng AS, Jiang J, Stuart BL, Shen J-X, Blair C, Narins PM (2012) Inner ear morphological correlates of ultrasonic hearing in frogs. Hear Res 283:70–79

    Article  PubMed  Google Scholar 

  • Assis CA (2003) The lagenar otoliths of teleosts: their morphology and its application in species identification, phylogeny and systematics. J Fish Biol 62:1268–1295

    Article  Google Scholar 

  • Assis CA (2005) The utricular otoliths, lapilli, of teleosts: their morphology and relevance for species identification and systematics studies. Scientia Marina 69(2):259–273

    Article  Google Scholar 

  • Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M (2008) Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evol Biol 8(215):1–13

    Google Scholar 

  • Baird RA (1994) Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement. J Neurophysiol 71(2):685–705

    CAS  PubMed  Google Scholar 

  • Bang PI, Sewell WF, Malicki JJ (2001) Morphology and cell type heterogeneities of the inner ear epithelia in adult and juvenile zebrafish (Danio rerio). J Comp Neurol 438(2):173–190

    Article  CAS  PubMed  Google Scholar 

  • Bernstein P (2003) The ear region of Latimeria chalumnae: functional and evolutionary implications. Zoology 106:233–242

    Article  PubMed  Google Scholar 

  • Best ACG, Gray JAB (1980) Morphology of the utricular recess in the sprat. J Mar Biol Assoc UK 60(3):703–715

    Article  Google Scholar 

  • Betancur-R. R, Broughton R, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila NI, Sanciangco M, Cureton II JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G (2013) The tree of life and a new classification of bony fishes. PLoS Currents Tree of Life

    Google Scholar 

  • Bever MM, Fekete DM (2002) Atlas of the developing inner ear in zebrafish. Dev Dyn 223(4):536–543

    Article  PubMed  Google Scholar 

  • Bierbaum G (1914) Untersuchungen über den Bau der Gehörorgane von Tiefseefischen. Zeitschrift für wissenschaftliche Zoologie 111(3):281–380

    Google Scholar 

  • Blaxter JHS, Denton EJ, Gray JAB (1981) Acousticolateralis system in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Proceedings in life sciences. Springer, New York, pp 39–59

    Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314(3):452–466

    Article  CAS  PubMed  Google Scholar 

  • Braun CB, Grande T (2008) Evolution of peripheral mechanisms for the enhancement of sound reception. In: Webb JF, Fay RR, Popper AN (eds) Fish bioacoustics. Springer handbook of auditory research, vol 32. Springer, New York, pp 99–144

    Google Scholar 

  • Braun CB, Baldwin ZH, Sparks JS (2012) Diversity of auditory abilities and hearing-enhancing morphologies in Malagasy-South Asian cichlids. Paper presented at the tenth international congress of neuroethology, College Park, MD, USA, 5–10 August 2012

    Google Scholar 

  • Broughton RE, Betancur-R. R, Li C, Arratia G, Ortí G (2013) Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLoS Currents Tree of Life

    Google Scholar 

  • Buran BN, Deng XH, Popper AN (2005) Structural variation in the inner ears of four deep-sea elopomorph fishes. J Morphol 265:215–225

    Article  PubMed  Google Scholar 

  • Burne RH (1913) Note on the membranous labyrinth of Neoceratodus forsteri. Anat Anz 43:396–400

    Google Scholar 

  • Carlström D (1963) A crystallographic study of vertebrate otoliths. Biol Bull 125(3):441–463

    Article  Google Scholar 

  • Chardon M (1968) Anatomie comparée de l’appareil de Weber et des structures connexes chez les siluriformes. Annales - Musee Royal de l’Afrique centrale, Sciences Zoologiques 169:1–277

    Google Scholar 

  • Chen F, Zha D, Fridberger A, Zheng J, Choudhury N, Jacques SL, Wang RK, Shi X, Nuttall AL (2011) A differentially amplified motion in the ear for near-threshold sound detection. Nat Neurosci 14(6):770–774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christensen CB, Christensen-Dalsgaard J, Madsen PT (2015) Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods. J Exp Biol 218:381–387

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Brandt C, Wilson M, Wahlberg M, Madsen PT (2011) Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods? Biol Lett 7(1):139–141

    Article  PubMed Central  PubMed  Google Scholar 

  • Coffin AB, Mohr RA, Sisneros JA (2012) Saccular-specific hair cell addition correlates with reproductive state-dependent changes in the auditory saccular sensitivity of a vocal fish. J Neurosci 32(4):1366–1376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coombs S, Popper AN (1979) Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J Comp Physiol A 132:203–207

    Article  Google Scholar 

  • Coombs S, Popper AN (1980) Auditory sensitivity and inner ear ultrastructure in Osteoglossum bicirrhosum. Am Zool 20(4):785

    Google Scholar 

  • Coombs S, Popper AN (1982) Structure and function of the auditory system in the Clown knifefish, Notopterus chitala. J Exp Biol 97:225–239

    Google Scholar 

  • Dale T (1976) The labyrinthine mechanoreceptor organs of the cod Gadus morhua L. (Teleostei: Gadidae). Norw J Zool 24:85–128

    Google Scholar 

  • Dehadrai PV (1959) On the swimbladder and its connection with the internal ear in family Cichlidae. Proc Natl Inst Sci India B 25(5):254–261

    Google Scholar 

  • Deng XH (2009) Comparative studies on the structure of the ears of deep-sea fishes. Dissertation, University of Maryland, College Park, MD, USA

    Google Scholar 

  • Deng XH, Wagner H-J, Popper AN (2011) The inner ear and its coupling to the swim bladder in the deep-sea fish Antimora rostrata (Teleostei: Moridae). Deep-Sea Res I 58:27–37

    Article  Google Scholar 

  • Deng XH, Wagner H-J, Popper AN (2013) Interspecific variations of inner ear structure in the deep-sea fish family Melamphaidae. Anat Rec 296:1064–1082

    Article  Google Scholar 

  • Denker A (1938) Zur Anatomie und Funktion des Labyrinths der Meerbrassen (Sparidae). Archiv für Ohren-, Hals- und Kehlkopfheilkunde 144:417–424

    Article  Google Scholar 

  • Denton EJ, Gray JAB (1979) The analysis of sound by the sprat ear. Nature 282:406–407

    Article  CAS  PubMed  Google Scholar 

  • Duncan JS, Fritzsch B (2012) Evolution of sound and balance perception: innovations that aggregate single hair cells into the ear and transform a gravistatic sensor into the organ of Corti. Anat Rec 295:1760–1774

    Article  Google Scholar 

  • Edds-Walton PL, Popper AN (1995) Hair cell orientation patterns on the saccules of juvenile and adult Toadfish, Opsanus tau. Acta Zool 76(4):257–265

    Article  CAS  PubMed  Google Scholar 

  • Edds-Walton PL, Fay RR, Highstein SM (1999) Dendritic arbors and central projections of physiologically characterized auditory fibers from the saccule of the Toadfish, Opsanus tau. J Comp Neurol 411:212–238

    Article  CAS  PubMed  Google Scholar 

  • Enger PS (1976) On the orientation of haircells in the labyrinth of perch (Perca fluviatilis). In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 49–62

    Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (1988) Peripheral adaptations for spatial hearing in fish. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 711–731

    Chapter  Google Scholar 

  • Fay RR (2011) Psychoacoustics: what fish hear. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Academic, San Diego, pp 276–282

    Chapter  Google Scholar 

  • Fay RR, Edds-Walton PL (1997) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 111:1–21

    Article  CAS  PubMed  Google Scholar 

  • Fink SV, Fink WL (1996) Interrelationships of ostariophysan fishes (Teleostei). In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fishes. Academic, San Diego, pp 209–249

    Chapter  Google Scholar 

  • Finneran JJ, Hastings MC (2000) A mathematical analysis of the peripheral auditory system mechanics in the goldfish (Carassius auratus). J Acoust Soc Am 108(3):1308–1321

    Article  CAS  PubMed  Google Scholar 

  • Flock Å (1964) Structure of the macula utriculi with special reference to directional interplay of sensory responses as revealed by morphological polarization. J Cell Biol 22:413–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forlano PM, Kim SD, Krzyminska ZM, Sisneros JA (2014) Catecholaminergic connectivity to the inner ear, central auditory and vocal motor circuitry in the plainfin midshipman fish, Porichthys notatus. J Comp Neurol 522(13):2887–2927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frédérich B, Olivier D, Litsios G, Alfaro ME, Parmentier E (2014) Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes. Proc R Soc B Biol Sci 281:20141047

    Article  Google Scholar 

  • Fritzsch B (1987) Inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (2003) The ear of Latimeria chalumnae revisited. Zoology 106:243–248

    PubMed  Google Scholar 

  • Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T (2013) Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 15(1):63–79

    Article  PubMed Central  PubMed  Google Scholar 

  • Froese H (1938) Vergleichend-anatomische Studien über das Knochenfischlabyrinth. Z Vgl Physiol 34(4):610–646

    Google Scholar 

  • Gauldie RW, Dunlop D, Tse J (1986a) The remarkable lungfish otolith. N Z J Mar Freshw Res 20(1):81–92

    Article  Google Scholar 

  • Gauldie RW, Dunlop D, Tse J (1986b) The simultaneous occurrence of otoconia and otoliths in four teleost fish species. N Z J Mar Freshw Res 20(1):93–99

    Article  Google Scholar 

  • Greenwood PH (1970) Skull and swimbladder connections in fishes of the family Megalopidae. Bull Br Mus (Nat Hist) Zool 19(3):121–135

    Google Scholar 

  • Hawkins AD (1993) Underwater sound and fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman and Hall, London, pp 129–169

    Chapter  Google Scholar 

  • Higgs DM, Plachta DTT, Rollo AK, Singheiser M, Hastings MC, Popper AN (2004) Development of ultrasound detection in American shad (Alosa sapidissima). J Exp Biol 207:155–163

    Article  CAS  PubMed  Google Scholar 

  • Hochmann S, Aghaallaei N, Bajoghli B, Soroldoni D, Carl M, Czerny T (2007) Expression of marker genes during early ear developmental in medaka. Gene Expr Patterns 7:355–362

    Article  CAS  PubMed  Google Scholar 

  • Horodysky AZ, Brill RW, Fine ML, Musick JA, Latour RJ (2008) Acoustic pressure and particle motion thresholds in six sciaenid fishes. J Exp Biol 211(9):1504–1511

    Article  PubMed  Google Scholar 

  • Jenkins DB (1974) Preliminary report on anatomical studies of inner ear in catfishes (Siluriformes). Anat Rec 178(2):382

    Google Scholar 

  • Jenkins DB (1977) A light microscopic study of the saccule and lagena in certain catfishes. Am J Anat 150:605–630

    Article  CAS  PubMed  Google Scholar 

  • Jenkins DB (1979a) Anatomical investigation of the saccule in Clarius batrachus. Scan Electron Microsc 1979:949–954

    Google Scholar 

  • Jenkins DB (1979b) A transmission and scanning electron microscopic study of the saccule in five species of catfishes. Am J Anat 154:81–102

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen JM (1976) Hair cell polarization in the flatfish inner ear. Acta Zool 57:37–39

    Article  Google Scholar 

  • Kéver L, Colleye O, Herrel A, Romans P, Parmentier E (2014) Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus). J Exp Biol 217:2517–2525

    Article  PubMed  Google Scholar 

  • Klingenberg CP (2008) Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst 39:115–132

    Article  Google Scholar 

  • Krysl P, Hawkins AD, Schilt C, Cranford TW (2012) Angular oscillation of solid scatterers in response to progressive planar acoustic waves: do fish otoliths rock? PLoS One 7(8), e42591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ladich F (2014a) Diversity in hearing in fishes: ecoacoustical, communicative, and developmental constraints. In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing research. Springer handbook of auditory research, vol 49. Springer, New York, pp 238–321

    Google Scholar 

  • Ladich F (2014b) Fish bioacoustics. Curr Opin Neurobiol 28:121–127

    Article  CAS  PubMed  Google Scholar 

  • Ladich F, Fay RR (2013) Auditory evoked potential audiometry in fish. Rev Fish Biol Fish 23:317–364

    Article  PubMed Central  PubMed  Google Scholar 

  • Ladich F, Popper AN (2001) Comparison of the inner ear ultrastructure between teleost fishes using different channels for communication. Hear Res 154(1–2):62–72

    Article  CAS  PubMed  Google Scholar 

  • Ladich F, Popper AN (2004) Parallel evolution in fish hearing organs. In: Manley G, Fay RR, Popper AN (eds) Evolution of the vertebrate auditory system. Springer handbook of auditory research, vol 22. Springer, New York, pp 95–127

    Chapter  Google Scholar 

  • Ladich F, Yan HY (1998) Correlation between auditory sensitivity and vocalization in anabantoid fishes. J Comp Physiol A Sens Neural Behav Physiol 182(6):737–746

    Article  CAS  Google Scholar 

  • Lechner W, Ladich F (2008) Size matters: diversity in swimbladders and Weberian ossicles affects hearing in catfishes. J Exp Biol 211(10):1681–1689

    Article  PubMed  Google Scholar 

  • Lombarte A, Fortuno JM (1992) Differences in morphological features of the sacculus of the inner ear of two hakes (Merluccius capensis and M. paradoxus, Gadiformes) inhabits from different depth of sea. J Morphol 214(1):97–107

    Article  Google Scholar 

  • Lombarte A, Popper AN (1994) Quantitative analyses of postembryonic hair cell addition in the otolithic endorgans of the inner ear of the Europan hake, Merluccius merluccius (Gadiformes, Teleostei). J Comp Neurol 345(3):419–428

    Article  CAS  PubMed  Google Scholar 

  • Lombarte A, Popper AN (2004) Quantitative changes in the otolithic organs of the inner ear during the settlement period in European hake Merluccius merluccius. Mar Ecol Prog Ser 267:233–240

    Article  Google Scholar 

  • Lovell JM, Findlay MM, Harper G, Moate RM, Pilgrim DA (2005a) The polarisation of hair cells from the ear of the European bass (Dicentrarchus labrax). Comp Biochem Physiol A 141:116–121

    Article  CAS  Google Scholar 

  • Lovell JM, Findlay MM, Moate RM, Nedwell JR, Pegg MA (2005b) The inner ear morphology and hearing abilities of the Paddlefish (Polyodon spathula) and the Lake Sturgeon (Acipenser fulvescens). Comp Biochem Physiol A 142:286–296

    Article  CAS  Google Scholar 

  • Lovell JM, Findlay MM, Moate RM, Pilgrim DA (2005c) The polarization of inner ear ciliary bundles from a scorpaeniform fish. J Fish Biol 66:836–846

    Article  Google Scholar 

  • Lu Z, Popper AN (1998) Morphological polarizations of sensory hair cells in the three otolithic organs of a teleost fish: fluorescent imaging of ciliary bundles. Hear Res 126(1–2):47–57

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Popper AN (2001) Neural response directionality correlates of hair cell orientation in a teleost fish. J Comp Physiol A Sens Neural Behav Physiol 187(6):453–465

    Article  CAS  Google Scholar 

  • Lu Z, Song J, Popper AN (1998) Encoding of acoustic directional information by saccular afferents of the sleeper goby, Dormitator latifrons. J Comp Physiol A Sens Neural Behav Physiol 182(6):805–815

    Article  CAS  Google Scholar 

  • Lu Z, Xu Z, Buchser WJ (2003) Acoustic response properties of lagenar nerve fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(12):889–905

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Xu Z, Buchser WJ (2004) Coding of acoustic particle motion by utricular fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190(11):923–938

    CAS  PubMed  Google Scholar 

  • Lychakov DV (1995) Investigation of the otolithic apparatus in the Acipenser fry. J Evol Biochem Physiol 31(3):333–341

    Google Scholar 

  • Malicki J, Schier AF, Solnica-Krezel L, Stemple DL, Neuhauss SCF, Stainier DYR, Abdelilah S, Rangini Z, Zwartkruis F, Driever W (1996) Mutations affecting development of the zebrafish ear. Development 123:275–283

    CAS  PubMed  Google Scholar 

  • Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci 97(22):11736–11743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mann DA, Lu ZM, Popper AN (1997) A clupeid fish can detect ultrasound. Nature 389(6649):341

    Article  CAS  Google Scholar 

  • Mann DA, Lu ZM, Hastings MC, Popper AN (1998) Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). J Acoust Soc Am 104(1):562–568

    Article  CAS  PubMed  Google Scholar 

  • Mann DA, Higgs DM, Tavolga WN, Souza MJ, Popper AN (2001) Ultrasound detection by clupeiform fishes. J Acoust Soc Am 109(6):3048–3054

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen C (1984) Structure and innervation of inner ear sensory epithelia in the European eel (Anguilla anguilla L.). Acta Zool 65(4):189–207

    Article  Google Scholar 

  • Mathiesen C, Popper AN (1987) The ultrastructure and innervation of the ear of the gar, Lepisosteus osseus. J Morphol 194(2):129–142

    Article  CAS  PubMed  Google Scholar 

  • McCormick CA, Popper AN (1984) Auditory sensitivity and psychophysical tuning curves in the elephant nose fish, Gnathonemus petersii. Journal of Comparative Physiology A 155(6):753–761

    Article  Google Scholar 

  • McMahan CD, Prosanta C, Sparks JS, Smith LW, Davis MP (2013) Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae). PLoS One 8(8), e71162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millot J, Anthony J (1965) Anatomie de Latimeria chalumnae II. Système nerveux et organes des sens. Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Myrberg AA Jr, Spires JY (1980) Hearing in damselfishes: an analysis of signal detection among closely related species. J Comp Physiol A 140:135–144

    Article  Google Scholar 

  • Nelson EM (1955) The morphology of the swim bladder and auditory bulla in the Holocentridae. Fieldiana: Zoology 37:121–130

    Google Scholar 

  • Nicolson T (2005) The genetics of hearing and balance in zebrafish. Annu Rev Genet 39:9–22

    Article  CAS  PubMed  Google Scholar 

  • Niemiller ML, Higgs DM, Soares D (2013) Evidence for hearing loss in amblyopsid cavefishes. Biol Lett 9(3):20130104

    Article  PubMed Central  PubMed  Google Scholar 

  • Noro S-i, Yamamoto N, Ishikawa Y, Ito H, Ijiri K (2007) Studies on the morphology of the inner ear and semicircular canal endorgan projections of ha, a medaka behavior mutant. Fish Biol J Medaka 11:31–41

    Google Scholar 

  • O’Connell CP (1955) The gas bladder and its relation to the inner ear in Sardinops caerulea and Engraulis mordax. Fish Bull 56(505–533)

    Google Scholar 

  • Oxman DS, Barnett-Johnson R, Smith ME, Coffin A, Miller DL, Josephson R, Popper AN (2007) The effect of vaterite deposition on sound reception, otolith morphology, and inner ear sensory epithelia in hatchery-reared Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 64(11):1469–1478

    Article  Google Scholar 

  • Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173(4002):1124–1127

    Article  Google Scholar 

  • Parmentier E, Vandewalle P, Lagardere F (2001) Morpho-anatomy of the otic region in carapid fishes: eco-morphological study of their otoliths. J Fish Biol 58(4):1046–1061

    Article  Google Scholar 

  • Parmentier E, Lagardere F, Vandewalle P (2002) Relationships between inner ear and sagitta growth during ontogenesis of three Carapini species, and consequences of life-history events on the otolith microstructure. Mar Biol 141(3):491–501

    Article  Google Scholar 

  • Parmentier E, Mann K, Mann D (2011) Hearing and morphological specializations of the mojarra (Eucinostomus argenteus). J Exp Biol 214(16):2697–2701

    Article  PubMed  Google Scholar 

  • Platt C (1977) Hair cell distribution and orientation in goldfish otolith organs. J Comp Neurol 172(2):283–297

    Article  CAS  PubMed  Google Scholar 

  • Platt C (1983) Retention of generalized hair cell patterns in the inner ear of the primitive flatfish Psettodes. Anat Rec 207(3):503–508

    Article  CAS  PubMed  Google Scholar 

  • Platt C (1993) Zebrafish inner ear sensory surfaces are similar to those in goldfish. Hear Res 65(1–2):133–140

    Article  CAS  PubMed  Google Scholar 

  • Platt C (1994) Hair cells in the lagenar otolith organ of the coelacanth are unlike those in amphibians. J Morphol 220:381

    Google Scholar 

  • Platt C, Popper AN (1981a) Fine structure and function of the ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 3–38

    Chapter  Google Scholar 

  • Platt C, Popper AN (1981b) Otolith organ receptor morphology in herring-like fishes. In: Gualtierotti T (ed) The vestibular system: function and morphology. Springer, New York, pp 64–76

    Chapter  Google Scholar 

  • Platt C, Jørgensen JM, Popper AN (2004) The inner ear of the lungfish Protopterus. J Comp Neurol 471(3):277–288

    Article  PubMed  Google Scholar 

  • Popper AN (1976) Ultrastructure of auditory regions in inner ear of Lake whitefish. Science 192(4243):1020–1023

    Article  CAS  PubMed  Google Scholar 

  • Popper AN (1977) Scanning electron microscopic study of sacculus and lagena in ears of fifteen species of teleost fishes. J Morphol 153(3):397–417

    Article  Google Scholar 

  • Popper AN (1978) Scanning electron microscopic study of the otolithic organs in the Bichir Polypterus bichir and Shovel-nose sturgeon Scaphirhynchus platorhynchus. J Comp Neurol 181(1):117–128

    Article  CAS  PubMed  Google Scholar 

  • Popper AN (1979) Ultrastructure of the sacculus and lagena in a moray eel (Gymnothorax sp.). J Morphol 161(3):241–256

    Article  Google Scholar 

  • Popper AN (1980) Scanning electron microscopic study of the sacculus and lagena in several deep-sea fishes. Am J Anat 157(2):115–136

    Article  CAS  PubMed  Google Scholar 

  • Popper AN (1981) Comparative scanning electron microscopic investigation of the sensory epithelia in the teleost sacculus and lagena. J Comp Neurol 200(3):357–374

    Article  CAS  PubMed  Google Scholar 

  • Popper AN (2011) Auditory system morphology. In: Farrel AP (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 252–261

    Chapter  Google Scholar 

  • Popper AN, Coombs S (1982) The morphology and evolution of the ear in actinopterygian fishes. Am Zool 22(2):311–328

    Article  Google Scholar 

  • Popper AN, Fay RR (1977) Structure and function of elasmobranch auditory system. Am Zool 17(2):443–452

    Article  Google Scholar 

  • Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273(1–2):25–36

    Article  PubMed  Google Scholar 

  • Popper AN, Hoxter B (1981) The fine structure of the sacculus and lagena of a teleost fish. Hear Res 5(2–3):245–263

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Lu ZM (2000) Structure–function relationships in fish otolith organs. Fish Res 46(1–3):15–25

    Article  Google Scholar 

  • Popper AN, Northcutt RG (1983) Structure and innervation of the inner ear of the bowfin, Amia calva. J Comp Neurol 213(3):279–286

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Platt C (1979) Herring has a unique receptor pattern. Nature 280(5725):832–833

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Platt C (1983) Sensory surface of the saccule and lagena in the ears of ostariophysan fishes. J Morphol 176(2):121–129

    Article  Google Scholar 

  • Popper AN, Schilt CR (2008) Hearing and acoustic behavior: basic and applied considerations. In: Webb JF, Fay RR, Popper AN (eds) Fish bioacoustics. Springer handbook of auditory research, vol 32. Springer, New York, pp 17–48

    Google Scholar 

  • Popper AN, Tavolga WN (1981) Structure and function of the ear in the marine catfish, Arius felis. J Comp Physiol A 144(1):27–34

    Article  Google Scholar 

  • Popper AN, Plachta DTT, Mann DA, Higgs DM (2004) Response of clupeid fish to ultrasound: a review. ICES J Mar Sci 61(7):1057–1061

    Article  Google Scholar 

  • Popper AN, Ramcharitar J, Campana SE (2005) Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Freshw Res 56(5):497–504

    Article  Google Scholar 

  • Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70(2):257–290

    Article  Google Scholar 

  • Project TD (2003–2009) Phylogenetic classification of bony fishes – version 3. www.deepfin.org/Classification_v3.htm. Accessed 19 Sept 2014

  • Ramcharitar JU, Higgs DM, Popper AN (2001) Sciaenid inner ears: a study in diversity. Brain Behav Evol 58(3):152–162

    Article  CAS  PubMed  Google Scholar 

  • Ramcharitar JU, Deng XH, Ketten DR, Popper AN (2004) Form and function in the unique inner ear of a teleost: the silver perch (Bairdiella chrysoura). J Comp Neurol 475(4):531–539

    Article  PubMed  Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Fische und Amphibien. In: Das Gehörorgan der Wirbelthiere, vol 1. Samson & Wallin, Stockholm

    Google Scholar 

  • Rodgers GV, Rogers PH (2011) Experimental investigation of the Krysl–Cranford–Schilt model for the otolith vibration of a teleost fish. J Acoust Soc Am 129(4):2473

    Article  Google Scholar 

  • Rogers PH, Cox M (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 131–149

    Chapter  Google Scholar 

  • Rogers PH, Popper AN, Hastings MC, Saidel WM (1988) Processing of acoustic signals in the auditory system of bony fish. J Acoust Soc Am 83(1):338–349

    Article  CAS  PubMed  Google Scholar 

  • Rosen DE, Greenwood PH (1970) Origin of the Weberian apparatus and the relationships of the ostariophysan and gonorynchiform fishes. Am Mus Novit 2428:1–25

    Google Scholar 

  • Saidel WM, Popper AN (1983) Spatial organization in the saccule and lagena of a teleost – hair cell pattern and innervation. J Morphol 177(3):301–317

    Article  CAS  PubMed  Google Scholar 

  • Sand O, Michelsen A (1978) Vibration measurements of perch saccular otolith. J Comp Physiol A 123(1):85–89

    Article  Google Scholar 

  • Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of actinopterygian fish. In: Webster DE, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 295–322

    Chapter  Google Scholar 

  • Schibler A, Malicki J (2007) A screen for genetic defects of the zebrafish ear. Mech Dev 124(7–8):592–604

    Article  CAS  PubMed  Google Scholar 

  • Schneider H (1942) Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörvermögen. Z Vgl Physiol 29(1–2):172–194

    Article  Google Scholar 

  • Schulz-Mirbach T, Hess M, Plath M (2011) Inner ear morphology in the Atlantic molly Poecilia mexicana – first detailed microanatomical study of the inner ear of a cyprinodontiform species. PLoS One 6(11), e27734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulz-Mirbach T, Metscher BD, Ladich F (2012) Relationship between swim bladder morphology and hearing abilities – a case study on Asian and African cichlids. PLoS One 7(8), e42292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulz-Mirbach T, Heß M, Metscher BD, Ladich F (2013) A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microCT and 3D histological study. BMC Biol 11:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulz-Mirbach T, Ladich F, Plath M, Metscher BD, Heß M (2014) Are accessory hearing structures linked to inner ear morphology? Insights from 3D orientation patterns of ciliary bundles in three cichlid species. Front Zool 11:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Sienknecht UJ (2013) Origin and development of hair cell orientation in the inner ear. In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing research. Springer handbook of auditory research. Springer, New York, pp 1–41

    Google Scholar 

  • Sienknecht UJ, Köppl C, Fritzsch B (2014) Evolution and development of hair cell polarity and efferent function in the inner ear. Brain Behav Evol 83:150–161

    PubMed  Google Scholar 

  • Silber J, Cotton J, Nam J-H, Peterson EH, Grant W (2004) Computational models of hair cell bundle mechanics: III. 3-D utricular bundles. Hear Res 197:112–130

    Article  PubMed  Google Scholar 

  • Sisneros JA (2007) Saccular potentials of the vocal plainfin midshipman fish, Porichthys notatus. J Comp Physiol A 193(4):413–424

    Article  Google Scholar 

  • Sisneros JA (2009) Adaptive hearing in the vocal plainfin midshipman fish: getting in tune for the breeding season and implications for acoustic communication. Integr Zool 4:33–42

    Article  PubMed  Google Scholar 

  • Smith M, Schuck J, Gilley R, Rogers B (2011) Structural and functional effects of acoustic exposure in goldfish: evidence for tonotopy in the teleost saccule. BMC Neurosci 12(1):19

    Article  PubMed Central  PubMed  Google Scholar 

  • Sokolowski BHA, Popper AN (1987) Gross and ultrastructural development of the saccule of the Toadfish Opsanus tau. J Morphol 194(3):323–348

    Article  CAS  PubMed  Google Scholar 

  • Song J, Mathieu A, Soper RF, Popper AN (2006) Structure of the inner ear of bluefin tuna Thunnus thynnus. J Fish Biol 68(6):1767–1781

    Article  Google Scholar 

  • Sparks JS (2004) Molecular phylogeny and biogeography of the Malagasy and South Asian cichlids (Teleostei: Perciformes: Cichlidae). Mol Phylogenet Evol 30(3):599–614

    Article  CAS  PubMed  Google Scholar 

  • Sparks JS (2008) Phylogeny of the cichlid subfamily Etroplinae and taxonomic revision of the Malagasy cichlid genus Paretroplus (Teleostei: Cichlidae). Bull Am Mus Nat Hist 314:1–151

    Article  Google Scholar 

  • Sparks JS, Smith WL (2004) Phylogeny and biogeography of cichlid fishes (Teleostei: Perciformes: Cichlidae). Cladistics 20(6):501–517

    Article  Google Scholar 

  • Stipetić E (1939) Über das Gehörorgan der Mormyriden. Z Vgl Physiol 26(5):740–752

    Article  Google Scholar 

  • Tsuboi M, Gonzalez-Voyer A, Kolm N (2014) Phenotypic integration of brain size and head morphology in Lake Tanganyika cichlids. BMC Evol Biol 14:39

    Article  PubMed Central  PubMed  Google Scholar 

  • von Frisch K (1936) Über den Gehörsinn der Fische. Biol Rev 11(2):210–246

    Article  Google Scholar 

  • von Frisch K (1938) Über die Bedeutung des Sacculus und der Lagena für den Gehörsinn der Fische. Zeitschrift für vergleichende Physiologie 25:703–747

    Google Scholar 

  • von Frisch K, Stetter H (1932) Untersuchungen über den Sitz des Gehörsinnes bei der Elritze. Z Vgl Physiol 17(4):686–801

    Article  Google Scholar 

  • Wainwright PC (2007) Functional versus morphological diversity in macroevolution. Annu Rev Ecol Evol Syst 38:381–401

    Article  Google Scholar 

  • Webb JF, Smith WL, Ketten DR (2001) The laterophysic connection, a unique swim bladder-lateral line connection in butterflyfishes: an evolutionary novelty with implications for sensory function. J Morphol 248(3):298–299

    Google Scholar 

  • Webb JF, Smith WL, Ketten DR (2006) The laterophysic connection and swim bladder of butterflyfishes in the genus Chaetodon (Perciformes: Chaetodontidae). J Morphol 267(11):1338–1355

    Article  PubMed  Google Scholar 

  • Webb JF, Herman JL, Woods CF, Ketten DR (2010) The ears of butterflyfishes (Chaetodontidae): ‘hearing generalists’ on noisy coral reefs? J Fish Biol 77(6):1406–1423

    Article  CAS  PubMed  Google Scholar 

  • Weber EH (1819) Vergleichende Anatomie der Gehörwerkzeuge. Deutsches Archiv für die Physiologie 5:323–332

    Google Scholar 

  • Weber EH (1820) De aure et auditu hominis et animalium. Part I. De aure animalium aquatilium. Apud Gerhardum Fleischerum, Lipsiae

    Google Scholar 

  • Wegner NT (1979) The orientation of hair cells in the otolithic organs and papilla neglecta in the inner ear of the anabantide fish Colisa labiosa (Day). Acta Zool 60(4):205–216

    Google Scholar 

  • Whitfield TT, Granato M, vanEeden FJM, Schach U, Brand M, FurutaniSeiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, NussleinVolhard C (1996) Mutations affecting development of the zebrafish inner ear and lateral line. Development 123:241–254

    CAS  PubMed  Google Scholar 

  • Whitfield TT, Riley BB, Chiang M-Y, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 223:427–458

    Article  PubMed  Google Scholar 

  • Wilson M, Montie EW, Mann KA, Mann DA (2009) Ultrasound detection in the Gulf menhaden requires gas-filled bullae and an intact lateral line. J Exp Biol 212(21):3422–3427

    Article  PubMed  Google Scholar 

  • Wohlfahrt TA (1932) Anatomische Untersuchungen über das Labyrinth der Elritze (Phoxinus laevis L.). Z Vgl Physiol 17(4):659–685

    Article  Google Scholar 

  • Wohlfahrt TA (1933) Das Ohrlabyrinth des Schlammspringers (Periophthalmus schlosseri Pall.) – Ein Beitrag zur Kenntnis der Anatomie des Gobiidenlabyrinthes. Anat Embryol 102(2):298–306

    Google Scholar 

  • Wohlfahrt TA (1936) Das Ohrlabyrinth der Sardine (Clupea pilchardus Walb.) und seine Beziehungen zur Schwimmblase und Seitenlinie. Zoomorphology 31(3):371–410

    Google Scholar 

  • Yan HY, Curtsinger WS (2000) The otic gasbladder as an ancillary auditory structure in a mormyrid fish. Journal of Comparative Physiology A 186(6):595–602

    Article  CAS  Google Scholar 

  • Yamamoto T (1929) Morphologische Untersuchungen der Gehörorgane von Süsswasserknochenfischen. Folia Anat Jpn 7(4):325–378

    Google Scholar 

  • Zeddies DG, Fay RR, Gray MD, Alderks PW, Acob A, Sisneros JA (2012) Local acoustic particle motion guides sound-source localization behavior in the plainfin midshipman fish, Porichthys notatus. J Exp Biol 215(1):152–160

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review is dedicated to Arthur N. Popper and Richard R. Fay to celebrate more than 40 years of their influential work in fish bioacoustics. The second author is grateful for having had the opportunity to work with Art in his lab in the late 1990s on inner ears of labyrinth fishes and in this way became introduced into the field of inner ear structure in fishes. The first author was fundamentally inspired by Art’s early studies on cave-dwelling forms of the Mexican tetra Astyanax mexicanus and his numerous works on inner ear structures and his evolutionary hypotheses. Moreover, the first author worked in the second author’s lab on inner ears, ancillary auditory structures and auditory sensitivities and thus became in some way Art’s scientific “granddaughter.” Art’s lifelong interest in the diversity and evolution of fish inner ears and hearing is continued by us and by others. Our current review, largely based on Art’s work of almost 50 years, summarizes this diversity and highlights open questions and inspiring approaches that might lead to novel and deeper insights into this challenging and highly interesting field of research.

We are also grateful to Michael Stachowitsch for scientific English proof-reading and two anonymous reviewers for their constructive comments on an earlier version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Schulz-Mirbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schulz-Mirbach, T., Ladich, F. (2016). Diversity of Inner Ears in Fishes: Possible Contribution Towards Hearing Improvements and Evolutionary Considerations. In: Sisneros, J. (eds) Fish Hearing and Bioacoustics. Advances in Experimental Medicine and Biology, vol 877. Springer, Cham. https://doi.org/10.1007/978-3-319-21059-9_16

Download citation

Publish with us

Policies and ethics