Skip to main content

Non-equilibrium Transport in Density Modulated Phases of the Second Landau Level

  • Chapter
  • First Online:
Transport Spectroscopy of Confined Fractional Quantum Hall Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 183))

  • 1160 Accesses

Abstract

We investigate non-equilibrium transport in the reentrant integer quantum Hall phases of the second Landau level. At high currents, we observe a transition from the reentrant integer quantum Hall phases to isotropic conduction. Surprisingly, this transition is markedly different for the hole- and electron sides of each spin-branch of the second Landau level. While the hole bubble phases exhibit a sharp transition to an isotropic compressible phase, the transition for the electron side occurs gradually via an intermediate phase. This behavior might be understood in terms of a current-driven two-dimensional melting transition, either taking place as a first order phase transition or as two continuous transitions involving an intermediate phase. The breaking of the particle-hole symmetry might have consequences for the physics at \(\nu \) = 5/2 and other fractional quantum Hall states in the second Landau level.

Results shown in the following chapter have been partially published in the article [1]: Nonequilibrium transport in density modulated phases of the second Landau level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Baer, C. Rössler, S. Hennel, H.C. Overweg, T. Ihn, K. Ensslin, C. Reichl, W. Wegscheider, Phys. Rev. B 91, 195414 (2015). doi:10.1103/PhysRevB.91.195414

  2. M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 83, 824 (1999). doi:10.1103/PhysRevLett.83.824

  3. R.R. Du, D.C. Tsui, H.L. Stormer, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Solid State Commun. 109, 389 (1999). doi:10.1016/S0038-1098(98)00578-X

  4. K.B. Cooper, M.P. Lilly, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. B 60, R11285 (1999). doi:10.1103/PhysRevB.60.R11285

  5. M.M. Fogler, A.A. Koulakov, B.I. Shklovskii, Phys. Rev. B 54, 1853 (1996). doi:10.1103/PhysRevB.54.1853

  6. R. Moessner, J.T. Chalker, Phys. Rev. B 54, 5006 (1996). doi:10.1103/PhysRevB.54.5006

  7. N. Shibata, D. Yoshioka, Phys. Rev. Lett. 86, 5755 (2001). doi:10.1103/PhysRevLett.86.5755

  8. A.A. Koulakov, M.M. Fogler, B.I. Shklovskii, Phys. Rev. Lett. 76, 499 (1996). doi:10.1103/PhysRevLett.76.499

  9. M.M. Fogler, arXiv:cond-mat/0111001 (2001), pp. 98–138, in High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy, eds. by C. Berthier, L.-P. Levy, G. Martinez (Springer, Berlin, 2002)

  10. R. Côté, C.B. Doiron, J. Bourassa, H.A. Fertig, Phys. Rev. B 68, 155327 (2003). doi:10.1103/PhysRevB.68.155327

  11. R.M. Lewis, P.D. Ye, L.W. Engel, D.C. Tsui, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 89, 136804 (2002). doi:10.1103/PhysRevLett.89.136804

  12. R.M. Lewis, Y. Chen, L.W. Engel, D.C. Tsui, P.D. Ye, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 93, 176808 (2004). doi:10.1103/PhysRevLett.93.176808

  13. R.M. Lewis, Y.P. Chen, L.W. Engel, D.C. Tsui, L.N. Pfeiffer, K.W. West, Phys. Rev. B 71, 081301 (2005). doi:10.1103/PhysRevB.71.081301

  14. K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 90, 226803 (2003). doi:10.1103/PhysRevLett.90.226803

  15. J.P. Eisenstein, K.B. Cooper, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 88, 076801 (2002). doi:10.1103/PhysRevLett.88.076801

  16. J.S. Xia, W. Pan, C.L. Vicente, E.D. Adams, N.S. Sullivan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 93, 176809 (2004). doi:10.1103/PhysRevLett.93.176809

  17. A. Kumar, G.A. Csáthy, M.J. Manfra, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 105, 246808 (2010). doi:10.1103/PhysRevLett.105.246808

  18. N. Deng, A. Kumar, M.J. Manfra, L.N. Pfeiffer, K.W. West, G.A. Csáthy, Phys. Rev. Lett. 108, 086803 (2012). doi:10.1103/PhysRevLett.100.086803

  19. N. Deng, G. Gardner, S. Mondal, E. Kleinbaum, M. Manfra, G. Csáthy, Phys. Rev. Lett. 112, 116804 (2014). doi:10.1103/PhysRevLett.112.116804

  20. G.A. Csáthy, J.S. Xia, C.L. Vicente, E.D. Adams, N.S. Sullivan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 94, 146801 (2005). doi:10.1103/PhysRevLett.94.146801

  21. W. Pan, J.S. Xia, H.L. Stormer, D.C. Tsui, C. Vicente, E.D. Adams, N.S. Sullivan, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. B 77, 075307 (2008). doi:10.1103/PhysRevB.77.075307

  22. J. Nuebler, V. Umansky, R. Morf, M. Heiblum, K. von Klitzing, J. Smet, Phys. Rev. B 81, 035316 (2010). doi:10.1103/PhysRevB.81.035316

  23. M.O. Goerbig, P. Lederer, C.M. Smith, Phys. Rev. B 68, 241302 (2003). doi:10.1103/PhysRevB.68.241302

  24. M.O. Goerbig, P. Lederer, C.M. Smith, Phys. Rev. B 69, 115327 (2004). doi:10.1103/PhysRevB.69.115327

  25. G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991). doi:10.1016/0550-3213(91)90407-O

  26. M. Levin, B.I. Halperin, B. Rosenow, Phys. Rev. Lett. 99, 236806 (2007). doi:10.1103/PhysRevLett.99.236806

  27. S.-S. Lee, S. Ryu, C. Nayak, M.P.A. Fisher, Phys. Rev. Lett. 99, 236807 (2007). doi:10.1103/PhysRevLett.99.236807

  28. X.G. Wen, Phys. Rev. Lett. 66, 802 (1991). doi:10.1103/PhysRevLett.66.802

  29. B. Blok, X. Wen, Nucl. Phys. B 374, 615 (1992). doi:10.1016/0550-3213(92)90402-W

  30. R.H. Morf, Phys. Rev. Lett. 80, 1505 (1998). doi:10.1103/PhysRevLett.80.1505

  31. E.H. Rezayi, F.D.M. Haldane, Phys. Rev. Lett. 84, 4685 (2000). doi:10.1103/PhysRevLett.84.4685

  32. A.E. Feiguin, E. Rezayi, C. Nayak, S.D. Sarma, Phys. Rev. Lett. 100, 166803 (2008). doi:10.1103/PhysRevLett.100.166803

  33. G. Möller, S.H. Simon, Phys. Rev. B 77, 075319 (2008). doi:10.1103/PhysRevB.77.075319

  34. A.E. Feiguin, E. Rezayi, K. Yang, C. Nayak, S.D Sarma, Phys. Rev. B 79, 115322 (2009). doi:10.1103/PhysRevB.79.115322

  35. O.S. Zozulya, M. Haque, N. Regnault, Phys. Rev. B 79, 045409 (2009). doi:10.1103/PhysRevB.79.045409

  36. M. Storni, R.H. Morf, S.D. Sarma, Phys. Rev. Lett. 104, 076803 (2010). doi:10.1103/PhysRevLett.104.076803

  37. G. Möller, A. Wójs, N.R. Cooper, Phys. Rev. Lett. 107, 036803 (2011). doi:10.1103/PhysRevLett.107.036803

  38. X. Wan, K. Yang, E.H. Rezayi, Phys. Rev. Lett. 97, 256804 (2006). doi:10.1103/PhysRevLett.97.256804

  39. X. Wan, Z.-X. Hu, E.H. Rezayi, K. Yang, Phys. Rev. B 77, 165316 (2008). doi:10.1103/PhysRevB.77.165316

  40. I. Dimov, B.I. Halperin, C. Nayak, Phys. Rev. Lett. 100, 126804 (2008). doi:10.1103/PhysRevLett.100.126804

  41. A. Wójs, C. Tőke, J.K. Jain, Phys. Rev. Lett. 105, 096802 (2010). doi:10.1103/PhysRevLett.105.096802

  42. E.H. Rezayi, S.H. Simon, Phys. Rev. Lett. 106, 116801 (2011). doi:10.1103/PhysRevLett.106.116801

  43. I.P. Radu, J.B. Miller, C.M. Marcus, M.A. Kastner, L.N. Pfeiffer, K.W. West, Science 320, 899 (2008). doi:10.1126/science.1157560

  44. L. Tiemann, G. Gamez, N. Kumada, K. Muraki, Science 335, 828 (2012). doi:10.1126/science.1216697

  45. S. Baer, C. Rössler, T. Ihn, K. Ensslin, C. Reichl, W. Wegscheider, Phys. Rev. B 90, 075403 (2014). doi:10.1103/PhysRevB.90.075403

  46. U. Wurstbauer, K.W. West, L.N. Pfeiffer, A. Pinczuk, Phys. Rev. Lett. 110, 026801 (2013). doi:10.1103/PhysRevLett.110.026801

  47. M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu, Nature 452, 829 (2008). doi:10.1038/nature06855

  48. W. Pan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Solid State Commun. 119, 641 (2001). doi:10.1016/S0038-1098(01)00311-8

  49. C. Reichl, J. Chen, S. Baer, C. Rössler, T. Ihn, K. Ensslin, W. Dietsche, W. Wegscheider, New J. Phys. 16, 023014 (2014). doi:10.1088/1367-2630/16/2/023014

  50. W. Pan, J.S. Xia, H.L. Stormer, D.C. Tsui, C.L. Vicente, E.D. Adams, N.S. Sullivan, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Solid State Communications series Emergent phenomena in quantum Hall systems. Emergent Phenom. Quantum Hall Syst. 140, 88 (2006). doi:10.1016/j.ssc.2006.05.048

  51. W. Pan, J.S. Xia, H.L. Stormer, D.C. Tsui, C.L. Vicente, E.D. Adams, N.S. Sullivan, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 95, 066808 (2005). doi:10.1103/PhysRevLett.95.066808

  52. N. Deng, J.D. Watson, L.P. Rokhinson, M.J. Manfra, G.A. Csáthy, Phys. Rev. B 86, 201301 (2012). doi:10.1103/PhysRevB.86.201301

  53. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973). doi:10.1088/0022-3719/6/7/010

  54. J.M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1974). doi:10.1088/0022-3719/7/6/005

  55. B.I. Halperin, D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978). doi:10.1103/PhysRevLett.41.121

  56. A.P. Young, Phys. Rev. B 19, 1855 (1979). doi:10.1103/PhysRevB.19.1855

  57. E. Fradkin, S.A. Kivelson, Phys. Rev. B 59, 8065 (1999). doi:10.1103/PhysRevB.59.8065

  58. C. Wexler, O. Ciftja, Int. J. Mod. Phys. B 20, 747 (2006). doi:10.1142/S0217979206033632

  59. C.W.J. Beenakker, H. van Houten, http://arxiv.org/abs/cond-mat/0412664cond-mat/0412664 (2004), Solid State Phys. 44, 1 (1991)

  60. J. Göres, G. Gamez, J.H. Smet, L. Pfeiffer, K. West, A. Yacoby, V. Umansky, K. von Klitzing, Phys. Rev. Lett. 99, 246402 (2007). doi:10.1103/PhysRevLett.99.246402

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Baer .

Appendix

Appendix

1.1 Dependence on Magnetic Field Direction

Changing the magnetic field direction does not change the qualitative behavior of the RIQH phases (see Fig. 15.9). However, details of the transition to the isotropic background may change.

Fig. 15.9
figure 9

Differential Hall resistance measured in two different magnetic field directions. (Sample D110726B-3D)

1.2 Hysteresis of Current Sweeps

Figure 15.10 demonstrates that no strong hysteresis is observed for the transition from RIQH phases to the isotropic compressible phase. Here, three consecutive sweeps of the DC current (\(I_\mathrm {DC}\) was changed from –57.5 nA \(\rightarrow \) 57.5 nA \(\rightarrow \) –57.5 nA \(\rightarrow \) 57.5 nA) are shown for the RIQH states R2B, R3B and R4B.

Fig. 15.10
figure 10

Differential Hall resistance versus the DC current for RIQH states R2B, R3B and R4B. For each magnetic field, three consecutive sweeps of the current are shown (\(I_\mathrm {DC}\): –57.5 nA \(\rightarrow \) 57.5 nA \(\rightarrow \) –57.5 nA \(\rightarrow \) 57.5 nA). All curves lie nearly perfectly on top of each other. (Sample D110726B-3D)

1.3 Negative Differential Resistance from DC Measurement

To exclude a measurement problem owing for example to unexpected frequency dependencies in an AC measurement, the longitudinal voltage drop \(V_{xx}\) has been measured in a pure DC measurement as a function of the magnetic field and the DC current. From this, the differential longitudinal resistance has been obtained by numerically deriving \(V_{xx}\) with respect to the current. The result is shown in Fig. 15.11. Apart from the increased noise level, this measurement perfectly agrees with the AC measurement of Fig. 15.1, excluding a problem with the AC measurement technique employed by us. Also here, pronounced regions of negative differential resistance are found (turquoise areas in Fig. 15.11). It should be noted that the ordinary resistance always remains positive.

Fig. 15.11
figure 11

Differential longitudinal resistance \(\partial V_{xx,\mathrm {DC}}/\partial I_\mathrm {DC}\) versus the magnetic field and the DC current. \(\partial V_{xx,\mathrm {DC}}/\partial I_\mathrm {DC}\) has been obtained by numerically deriving \(V_{xx,\mathrm {DC}}\) with respect to the applied DC current. The measurement agrees with Fig. 15.1, excluding a measurement problem as reason for the regions of negative differential resistance. (Sample D120427C-1C)

1.4 Bias Dependence of the Longitudinal Resistance

The bias dependence of the longitudinal resistance is shown in more detail in Fig. 15.12. At zero DC bias, \(R_{xx}\) shows a minimum at the B-field corresponding to the center of the RIQH phase, which is neighbored by two resistance maxima. When \(I_\mathrm {DC}\) is increased, the minimum in \(R_{xx}\) is lifted and the magnetic field spacing between the side-peaks begins to shrink. At large biases, the side-peaks join to a single peak in \(R_{xx}\), which then shrinks with subsequent increase of \(I_\mathrm {DC}\). This behavior is qualitatively similar to what is obtained when the temperature is increased [18, 52]. When the temperature is increased, the side-peaks move together until only a single peak is observed. The resistance peak shrinks as the temperature is further increased. This behavior is in sharp contrast to the activated behavior of FQH states.

Fig. 15.12
figure 12

DC current dependence of the RIQH minima in \(R_{xx}\). At zero DC bias, \(R_{xx}\) shows a minimum at the B-field corresponding to the center of the RIQH phase, which is neighbored by two resistance maxima. When \(I_\mathrm {DC}\) is increased, the minimum in \(R_{xx}\) is lifted and the magnetic field spacing between the side-peaks begins to shrink. At large biases, the side-peaks join to a single peak in \(R_{xx}\), which then shrinks with subsequent increase of \(I_\mathrm {DC}\). (Sample D120427C-1C)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baer, S., Ensslin, K. (2015). Non-equilibrium Transport in Density Modulated Phases of the Second Landau Level. In: Transport Spectroscopy of Confined Fractional Quantum Hall Systems. Springer Series in Solid-State Sciences, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-21051-3_15

Download citation

Publish with us

Policies and ethics