Skip to main content

Quantum Dots and Charge Detection Techniques

  • Chapter
  • First Online:
Transport Spectroscopy of Confined Fractional Quantum Hall Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 183))

  • 1175 Accesses

Abstract

We briefly introduce the basics of quantum dots and charge detection techniques. Interferometry experiments in the quantum Hall regime rely on the use of large quantum dots that are operated as analog of a Fabry-Pérot interferometer. Charge detection techniques are a powerful tool that provides additional insight about the internal dynamics of such a system. We discuss how the sensitivity of charge detectors can be further improved by reducing screening and by inducing a localized state in the quantum point contacts’ confinement potential. Exploiting these techniques, we are able to perform fast and well-resolved charge detection of a micron-sized quantum dot in the quantum Hall regime.

Results shown in the following chapter have been partially published in the article [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Rössler, T. Krähenmann, S. Baer, T. Ihn, K. Ensslin, C. Reichl, W. Wegscheider, New J. Phys. 15, 033011 (2013). doi:10.1088/1367-2630/15/3/033011

  2. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature 391, 156 (1998). doi:10.1038/34373

  3. S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven, Science 281, 540 (1998). doi:10.1126/science.281.5376.540

  4. W.G.v.d. Wiel, S.D. Franceschi, T. Fujisawa, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven, Science 289, 2105 ( 2000). doi:10.1126/science.289.5487.2105

  5. J. Schmid, J. Weis, K. Eberl, K.v. Klitzing, Phys. Rev. Lett. 84, 5824 ( 2000). doi:10.1103/PhysRevLett.84.5824

  6. A.C. Johnson, J.R. Petta, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. B 72, 165308 (2005). doi:10.1103/PhysRevB.72.165308

  7. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, Z. Wasilewski, Phys. Rev. B 61, R16315 (2000). doi:10.1103/PhysRevB.61.R16315

  8. H.W. Liu, T. Fujisawa, Y. Ono, H. Inokawa, A. Fujiwara, K. Takashina, Y. Hirayama, Phys. Rev. B 77, 073310 (2008). doi:10.1103/PhysRevB.77.073310

  9. F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Nature 442, 766 (2006). doi:10.1038/nature05065

  10. N. Shaji, C.B. Simmons, M. Thalakulam, L.J. Klein, H. Qin, H. Luo, D.E. Savage, M.G. Lagally, A.J. Rimberg, R. Joynt, M. Friesen, R.H. Blick, S.N. Coppersmith, M.A. Eriksson, Nat. Phys. 4, 540 (2008). doi:10.1038/nphys988

  11. E.A. Laird, J.M. Taylor, D.P. DiVincenzo, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. B 82, 075403 (2010). doi:10.1103/PhysRevB.82.075403

  12. P. Maletinsky, A. Badolato, A. Imamoglu, Phys. Rev. Lett. 99, 056804 (2007). doi:10.1103/PhysRevLett.99.056804

  13. K. Ono, S. Tarucha, Phys. Rev. Lett. 92, 256803 (2004). doi:10.1103/PhysRevLett.92.256803

  14. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 93, 130501 (2004). doi:10.1103/PhysRevLett.93.130501

  15. P. Roulleau, S. Baer, T. Choi, F. Molitor, J. Güttinger, T. Müller, S. Dröscher, K. Ensslin, T. Ihn, Nat. Commun. 2, 239 (2011). doi:10.1038/ncomms1241

  16. W.J.M. Naber, T. Fujisawa, H.W. Liu, W.G. van der Wiel, Phys. Rev. Lett. 96, 136807 (2006). doi:10.1103/PhysRevLett.96.136807

  17. T. Fujisawa, T.H. Oosterkamp, W.G.v.d. Wiel, B.W. Broer, R. Aguado, S. Tarucha, L.P. Kouwenhoven, Science 282, 932 (1998). doi:10.1126/science.282.5390.932

  18. T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport (OUP Oxford, 2010)

    Google Scholar 

  19. Y.V. Nazarov, Quantum Noise in Mesoscopic Physics (Springer, 2003)

    Google Scholar 

  20. M. Field, C.G. Smith, M. Pepper, D.A. Ritchie, J.E.F. Frost, G.A.C. Jones, D.G. Hasko, Phys. Rev. Lett. 70, 1311 (1993). doi:10.1103/PhysRevLett.70.1311

  21. T. Ihn, S. Gustavsson, U. Gasser, B. Küng, T. Müller, R. Schleser, M. Sigrist, I. Shorubalko, R. Leturcq, K. Ensslin, Solid State Commun. 149, 1419 (2009). doi:10.1016/j.ssc.2009.04.040

  22. J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Nature 430, 431 (2004). doi:10.1038/nature02693

  23. R. Schleser, E. Ruh, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Appl. Phys. Lett. 85, 2005 (2004). doi:10.1063/1.1784875

  24. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005). doi:10.1126/science.1116955

  25. K.D. Petersson, J.R. Petta, H. Lu, A.C. Gossard, Phys. Rev. Lett. 105, 246804 (2010). doi:10.1103/PhysRevLett.105.246804

  26. W. Lu, Z. Ji, L. Pfeiffer, K.W. West, A.J. Rimberg, Nature 423, 422 (2003). doi:10.1038/nature01642

  27. S. Ilani, J. Martin, E. Teitelbaum, J.H. Smet, D. Mahalu, V. Umansky, A. Yacoby, Nature 427, 328 (2004). doi:10.1038/nature02230

  28. J. Martin, S. Ilani, B. Verdene, J. Smet, V. Umansky, D. Mahalu, D. Schuh, G. Abstreiter, A. Yacoby, Science 305, 980 (2004). doi:10.1126/science.1099950

  29. C. Barthel, M. Kjærgaard, J. Medford, M. Stopa, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. B 81, 161308 (2010). doi:10.1103/PhysRevB.81.161308

  30. T. Müller, Radio-frequency quantum point contact charge detection, Ph.D. thesis, ETH Zürich (2011)

    Google Scholar 

  31. I.T. Vink, T. Nooitgedagt, R.N. Schouten, L.M.K. Vandersypen, W. Wegscheider, Appl. Phys. Lett. 91, 123512 (2007). doi:10.1063/1.2783265

  32. L.M.K. Vandersypen, J.M. Elzerman, R.N. Schouten, L.H.W.v. Beveren, R. Hanson, L.P. Kouwenhoven, Appl. Phys. Lett. 85, 4394 (2004). doi:10.1063/1.1815041

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Baer .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baer, S., Ensslin, K. (2015). Quantum Dots and Charge Detection Techniques. In: Transport Spectroscopy of Confined Fractional Quantum Hall Systems. Springer Series in Solid-State Sciences, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-21051-3_12

Download citation

Publish with us

Policies and ethics