Skip to main content

Seismic Response Simulation of Building Structures

  • Chapter

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

In this chapter, we present an overview of the E-Simulator for application to seismic response analysis of building structures. Accuracy and computational performance of simulation using the E-Simulator are discussed through examples of seismic response analysis of a four-story steel frame, buckling analysis of a column, and simulations of static cyclic responses of a composite beam and an exterior wall. Results of seismic response analysis with fixed base as well as soil-structure interaction analysis are presented for a high-rise building frame. Computational performance using the K computer is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ohtani, K., Ogawa, N., Katayama, T., Shibata, H.: Construction of E-defense (3-D full-scale earthquake testing facility). In: Proceedings 13th World Conference Earthquake Engineering (13WCEE) Vancouver, Canada, Paper No. 189 (2004)

    Google Scholar 

  2. Website of Hyogo Earthquake Engineering Research Center (E-Defense) of the National Research Institute of Earth Science and Disaster Prevention (NIED). http://www.bosai.go.jp/hyogo/ehyogo/index.html

  3. Hori, M., Noguchi, H., Ine, T.: Project report of development of numerical shaking table coping with E-defense. J. Earthq. Eng. Jpn. Soc. Civil Eng. 29, 1420–1425 (2007) (in Japanese)

    Google Scholar 

  4. Nakashima, M., Ogawa, K., Inoue, K.: Generic frame model for simulation of earthquake responses of steel moment frames. Earthq. Eng. Struct. Dyn. 31(3), 671–692 (2002)

    Article  Google Scholar 

  5. Ibarra, L.F., Medina, R.A., Krawinkler, H.: Hysteretic models that incorporate strength and stiffness deterioration. Earthq. Eng. Struct. Dyn. 34(12), 1489–1511 (2005)

    Article  Google Scholar 

  6. Website of Allied Engineering Corporation. http://www.alde.co.jp/english/index.html

  7. Akiba, H., et al.: Large scale drop impact analysis of mobile phone using ADVC on Blue Gene/L. In: Proceedings of the International Conference High Performance Computing Networking and Storage (SC06), Tampa, FL, USA (2006)

    Google Scholar 

  8. Suzuki, M., Ohyama, T., Akiba, H., Yoshimura, S., Noguchi, H.: Development of fast and robust parallel CGCG solver for large scale finite element analyses. Trans. Jpn. Soc. Mech. Eng. A68, 1010–1017 (2002) (in Japanese)

    Article  Google Scholar 

  9. Akiba, H., Ohyama, T., Shibata, Y.: CGCG method for structural analysis and its enhancement. In: Proceedings of the 7th International Conference on Engineering Computational Technology (ECT2010), Valencia, Spain (2010)

    Google Scholar 

  10. Hughes, T.J.R.: The finite element method: linear static and dynamic finite element analysis. Dover publications, Mineola, NY (2000)

    Google Scholar 

  11. Miyamura, T., Ohsaki, M., Kohiyama, M., Isobe, D., Onda, K., Akiba, H., Hori, M., Kajiwara, K., Ine, T.: Large-scale FE analysis of steel building frames using E-Simulator. Prog. Nucl. Sci. Technol. 2, 651–656 (2011)

    Article  Google Scholar 

  12. Miyamura, T., Ohsaki, M., Yamashita, T., Isobe, D., Kohiyama, M.: Dynamic collapse analysis of four-story steel frame using E-Simulator. In: Proceedings of the 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (CompDyn2013), vol. 49, Kos, pp. 1449–1469 (2015)

    Google Scholar 

  13. Miyamura, T., Yamashita, T., Akiba, H., Ohsaki, M.: Dynamic FE simulation of four-story steel frame modeled by solid elements and its validation using results of full-scale shake-table test. Earthq. Eng. Struct. Dyn. 44(9), 1449–1469 (2015)

    Google Scholar 

  14. Yamada, S., Suita, K., Tada, M., Kasai, K., Matsuoka, Y., Shimada, Y.: Collapse experiment of 4-story steel moment frame: Part 1, Outline of test results. In: Proceeding of the 14th World Conference Earthquake Engineering (14WCEE), Beijing, China, Paper ID. S17-01-004 (2008)

    Google Scholar 

  15. Suita, K., Yamada, S., Tada, M., Kasai, K., Matsuoka, Y., Shimada, Y.: Collapse experiment of 4-story steel moment frame: Part 2 detail of collapse behavior. In: Proceedings of the 14th World Conference Earthquake Engineering, Beijing, China, Paper ID. S17-01-011 (2008)

    Google Scholar 

  16. IDEAS Ver. 2, User’s Manual, Amnis Corp., Seattle, WA (2006)

    Google Scholar 

  17. Matsuoka, Y., Matsumiya, T., Suita, K., Nakashima, M.: Test on seismic performance evaluation of exterior ALC walls with opening: E-defense experimental projects for steel buildings: Part 14. Summaries of technical papers of annual meeting, Architectural Institute of Japan, C-1, pp. 1081–1082 (2007) (in Japanese)

    Google Scholar 

  18. Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  MATH  Google Scholar 

  19. Ucak, A., Tsopelas, P.: Constitutive model for cyclic response of structural steels with yield plateau. J. Struct. Eng. ASCE 137(2), 195–206 (2011)

    Article  Google Scholar 

  20. Simo, J.C., Taylor, R.L.: Consistent tangent operator for rate-independent elastoplasticity. Comp. Meth. Appl. Mech. Eng. 48, 101–118 (1985)

    Article  MATH  Google Scholar 

  21. Ohsaki, M., Zhang, J.Y., Miyamuram T.: A Heuristic algorithm for parameter identification of steel materials under asymmetric cyclic elastoplastic deformation. In: Proceedings of the 7th China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems (CJK-OSM7), Huangshan, China, Paper No. J045 (2012)

    Google Scholar 

  22. Yamashita, T., Ohsaki, M., Kohiyama, M., Miyamura, T., Zhang, J.Y., Tagawa, H.: Detailed finite element analysis of composite beam under cyclic loads. J. Struct. Constr. Eng., Arch. Inst. Jpn. 74, 1481–1490 (2014) (in Japanese)

    Google Scholar 

  23. Yamada, S., Imaeda, T., Okada, K.: Simple hysteresis model of structural steel considering the Bauschinger effect. J. Struct. Constr. Eng. Arch. Inst. Jpn. 67(559), 225–232 (2002) (in Japanese)

    Google Scholar 

  24. Ohsaki, M., Kasai, K., Matsuoka, Y., Zhang, J.Y.: Results of recent E-Defense tests on full-scale steel building: Part 2, Collapse simulation and blind analysis contest. In: Proceedings of the Structures Congress. ASCE, Vancouver, Canada (2008)

    Google Scholar 

  25. Matsuoka, Y., Suita, K., Yamada, S., Shimada, Y.: Non-structural component performance in 4-story frame tested to collapse. In: Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, Paper ID. S17-01-014 (2008)

    Google Scholar 

  26. Website of ASEBI at E-Defense, NIED, Project: E-Defense tests on full-scale four-story steel building. https://www.edgrid.jp/data/

  27. Website of K Computer (RIKEN Advanced Institute for Computational Science). http://www.aics.riken.jp/en/.

  28. Yamashita, T., Miyamura, T., Akiba, H., Kajiwara, K.: Verification of finite element elastic–plastic buckling analysis of square steel tube column using solid element. Transactions of Japan Society for Computational Engineering and Science, Paper No. 20130001 (2013) (in Japanese)

    Google Scholar 

  29. Simo, J.C., Rifai, M.S.: A class of assumed strain methods and the method of incompatible modes. Int. J. Numer. Meth. Eng. 29, 1595–1638 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Simo, J.C., Armero, F.: Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Meth. Eng. 33, 1413–49 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ohsaki, M., Miyamura, T., Kohiyama, M., Hori, M., Noguchi, H., Akiba, H., Kajiwara, K., Ine, T.: High-precision finite element analysis of elastoplastic dynamic responses of super-high-rise steel frames. Earthq. Eng. Struct. Dyn. 38, 635–654 (2009)

    Article  Google Scholar 

  32. Miyamura, T., Akiba, H., Hori, M.: Large-scale seismic response analysis of super-high-rise steel building considering soil-structure interaction using K computer. Int. J. High-Rise Building. 4(1), 75–83 (2015)

    Google Scholar 

  33. Kawai, H., Ogino, M., Shioya, R., Yoshimura, S.: Vectorization of polygon rendering for off-line visualization of a large scale structural analysis with ADVENTURE system on the Earth Simulator. J. Earth Simul. 9, 51–63 (2008)

    Google Scholar 

  34. HDDMPPS Project, “LexADV”. http://adventure.sys.t.u-tokyo.ac.jp/lexadv/

  35. Wada, Y., Kawai, H., Shioya, R.: Development of high resolution visualization library for very large scale analysis. In: Proceedings of the Conference on Computational Engineering and Science 18, Tokyo, Japan (2013) (in Japanese)

    Google Scholar 

  36. Yamada, S., Satsukawa, K., Kishiki, S., Shimada, Y., Matsuoka, Y., Suita, K.: Elasto-plastic behavior of panel zone in beam to external column connection with concrete slab. J. Struct. Constr. Eng., Arch. Inst. Jpn. 74(644), 1841–1849 (2009) (in Japanese)

    Google Scholar 

  37. Kohiyama, M., Ohsaki, M., Miyamura, T., Yamashita, T.: Finite element analysis of contact corner of ALC panel using E-Simulator. J. Struct. Eng., Arch. Inst. Jpn. 60B, 463–470 (2014) (in Japanese)

    Google Scholar 

  38. Kohiyama, M., Ohsaki, M., Miyamura, T., Yamashita, T.: Finite element analysis of damping mechanism of autoclaved lightweight aerated concrete panels for exterior walls of steel structures. In: Proceedings of the 11th World Congress of Computational Mechanics (WCCM11), Barcelona, Spain, Paper No. 1137 (2014)

    Google Scholar 

  39. Matsuoka, Y., Suita, K., Yamada, S., Shimada, Y., Akazawa, M., Matsumiya, T.: Evaluation of seismic performance of exterior cladding in full-scale 4-story building shaking table test. J. Struct. Constr. Eng., Arch. Inst. Jpn. 74, 1353–1361 (2009) (in Japanese)

    Google Scholar 

  40. Matsuzawa, K., Ozawa, J., Watanabe, T. Experimental research on friction characteristics of steel and cementitious material. In: Proceedings of the Japan Concrete Institute, 30, pp. 1141–1146 (2008) (in Japanese)

    Google Scholar 

  41. Katsuo, M., Ikenaga, M., Nagae, T., Nakashima, M.: Effect of velocity on dynamic coefficient of friction between steel and mortar. Summaries of technical papers of annual meeting, Architectural Institute of Japan, C-1, pp. 639–640 (2008) (in Japanese)

    Google Scholar 

  42. Website of ADVENTURE Project. http://adventure.sys.t.u-tokyo.ac.jp/

  43. Yoshimura, S., Shioya, R., Noguchi, H., Miyamura, T.: Advanced general-purpose computational mechanics system for large scale analysis and design. J Comput. Appl. Math. 149, 279–96 (2002)

    Article  MATH  Google Scholar 

  44. Yagawa, G., Shioya, R.: Parallel finite elements on a massively parallel computer with domain decomposition. Comput. Syst. Eng. 4, 495–503 (1993)

    Article  Google Scholar 

  45. Miyamura, T.: Incorporation of multipoint constraints into the balancing domain decomposition method and its parallel implementation. Int. J. Numer. Meth. Eng. 69, 326–46 (2007)

    Article  MATH  Google Scholar 

  46. Akiba, H., Miyamura, T., Ohsaki, M., Kohiyama, M., Yamashita, T., Hori, M. Kajiwara, K.: Performance of seismic analysis using E-Simulator on K computer. In: Proceedings of the International Conference on Simulation Technology (JSST2013), Tokyo, Japan (2013), Paper No. 53

    Google Scholar 

  47. Akiba, H., Hashizume, K., Miyamura, T.: Large scale nonlinear seismic analysis of high-rise office building with T2K and E-Simulator. Supercomputing News 13(3), 66–78 (2011) (in Japanese)

    Google Scholar 

Download references

Acknowledgments

This study is a part of Building Structures Working Group (Leader: Prof. Makoto Ohsaki, Kyoto University) of E-Simulator Development Committee (Leader: Prof. Muneo Hori, The University of Tokyo) of NIED. The authors acknowledge the valuable contribution from the committee members, and the financial support by NIED. The present study was also supported by MEXT of Japan through a grant for research on HPCI Strategic Program Field No. 3. The contribution by Dr. Tomonobu Ohyama, Mr. Kiyoshi Yuyama, Mr. Shuhei Takaya, and Mr. Koji Nishimoto at Allied Engineering Corporation for model building and numerical analysis is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ohsaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ohsaki, M., Miyamura, T., Kohiyama, M., Yamashita, T., Akiba, H. (2016). Seismic Response Simulation of Building Structures. In: Yoshimura, S., Hori, M., Ohsaki, M. (eds) High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21048-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21048-3_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21047-6

  • Online ISBN: 978-3-319-21048-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics