Skip to main content

Abstract

Large scale simulation of ground motion is a vital tool in engineering seismology and earthquake engineering. Need for high performance computing cannot be underestimated, because increasing the spatial resolution results in computing higher frequency components of ground motion which influence structure response. This chapter explains improvement of discretization for large scale simulation of ground motion simulation based on finite element method. Better mathematical treatment is needed for ground motion simulation since it solves a four-dimensional linear or non-linear wave equation so that mass matrix becomes diagonal. Diagonalization of the mass matrix is achieved by utilizing a set of orthogonal and discontinuous basis functions. While it sounds odd, the use of discontinuous basis functions provides us a larger capability of modeling. As examples of large scale simulation of ground motion, the use of K computer, the best supercomputer in Japan in the year of 2015, is explained. A non-linear finite element method is developed in K computer, so that a model of 10,000,000,000 degree-of-freedom is analyzed with 100,000 time steps in less than a half day. Numerical computation techniques and parallel computation enhancement are explained to realize this simulation, which leads to high scalability of the developed finite element method. As an illustrative example, Tokyo Metropolis is used as a target, and a K computer simulation of ground motion ispresented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An imaginary Japanese Earth guardian, supported by prayers for peace.

  2. 2.

    Defined as:

    $$\displaystyle\begin{array}{rcl} \text{communication}& =& \text{AVG}\{\mathrm{MPI{\_}Isend + MPI{\_}Irecv} {}\\ & & +\mathrm{MPI{ \_}Allreduce(total)} -\mathrm{MPI{\_}Allreduce(wait)}\} + \mathrm{MIN}\{\mathrm{MPI{\_}Waitall}\}, {}\\ \text{synchronization}& =& \text{AVG}\{\mathrm{MPI{\_}Allreduce(wait)} + \mathrm{MPI{\_}Waitall}\} -\text{MIN}\{\mathrm{MPI{\_}Waitall}\}, {}\\ \text{computation}& =& \text{AVG}\{\mathrm{total}\} -\text{communication} -\text{synchronization}. {}\\ \end{array}$$

    Here, AVG and MIN indicate the average and minimum values of all the compute nodes, respectively. MPI_Barrier is not used.

References

  1. Day, S.M., Bielak, J., Dreger, D., Graves, R.W., Larsen, S., Olsen, K.B., Pitarka, A.: Tests of 3D Elastodynamic Codes: Final Report for Lifelines Project 1A03, Pacific Earthquake Engineering Research Center (2005)

    Google Scholar 

  2. Frankel, A.: Three-dimensional simulations of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas fault. Bull. Seismol. Soc. Am. 83, 1020–1041 (1993)

    Google Scholar 

  3. Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am. 86, 1091–1106 (1996)

    MathSciNet  Google Scholar 

  4. Furumura, T., Koketsu, K.: Specific distribution of ground motion during the 1995 Kobe earthquake and its generation mechanism. Geophys. Res. Lett. 25, 785–788 (1998)

    Article  Google Scholar 

  5. Pitarka, A.: 3D elastic finite-difference modeling of seismic motion using staggered grids with non-uniform spacing. Bull. Seismol. Soc. Am. 89, 54–68 (1999)

    MathSciNet  Google Scholar 

  6. Bao, H., Bielak, J., Ghattas, O., Kallivokas, L.F., OH́allaron, D.R., Shewchuk, J., Xu, J.: Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers. Comput. Methods Appl. Mech. Eng. 152, 85–102 (1998)

    Google Scholar 

  7. Koketsu, K., Fujiwara, H., Ikegami, Y.: Finite-element simulation of seismic ground motion with a voxel mesh. Pure Appl. Geophys. 161, 2463–2478 (2004)

    Article  Google Scholar 

  8. Bielak, J., Ghattas, O., Kim, E.J.: Parallel octree-based finite element method for large-scale earthquake ground motion simulation. Comput. Model. Eng. Sci. 10, 99–112 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Ma, S., Liu, P.: Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods. Bull. Seismol. Soc. Am. 96, 1779–1794 (2006)

    Article  Google Scholar 

  10. Ichimura, T., Hori, M., Kuwamoto, H.: Earthquake motion simulation with multi-scale finite element analysis on hybrid grid. Bull. Seismol. Soc. Am. 97, 1133–1143 (2007)

    Article  Google Scholar 

  11. Ichimura, T., Hori, M., Bielak, J.: A hybrid multiresolution meshing technique for finite element three-dimensional earthquake ground motion modeling in basins including topography. Geophys. J. Int. 177, 1221–1232 (2009)

    Article  Google Scholar 

  12. Moczo, P., Kristeka, J., Galisb, M., Pazaka, P., Balazovjecha, M.: The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion. Acta Phys. Slovaca 57, 177–406 (2007)

    Article  Google Scholar 

  13. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  14. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 4th edn. Basic Formulation and Linear Problems, vol. 1. McGraw-Hill, London (1989)

    Google Scholar 

  15. Wu, S.R.: Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput. Methods Appl. Mech. Eng. 195, 5983–5994 (2006)

    Article  MATH  Google Scholar 

  16. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  17. Komatitsch, D., Vilotte, J.: The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88, 368–392 (1998)

    Google Scholar 

  18. Dumbser, M., Kaser, M.: An arbitrary high order discontinuous Galerkin method for elasticwaves on unstructured meshes ii: the three-dimensional isotropic case. Geophys. J. Int. 167, 319–336 (2006)

    Article  Google Scholar 

  19. Matsumoto, J., Takada, N.: Two-phase flow analysis based on a phase-field model using orthogonal basis bubble function finite element method. Int. J. Comput. Fluid Dyn. 22, 555–568 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wijerathne, M.L.L., Oguni, K., Hori, M: Numerical analysis of growing crack problems using particle discretization scheme. Int. J. Numer. Methods Eng. 80, 46–73 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Flanagan, D.P., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng. 17, 679–706 (1981)

    Article  MATH  Google Scholar 

  22. Belytschko, T., Bindman, L.P.: Assumed strain stabilization of the eight node hexahedral element. Comput. Methods Appl. Mech. Eng. 105, 225–260 (1993)

    Article  MATH  Google Scholar 

  23. Lysmer, J., Kuhlemeyer, R.L.: Finite dynamic model for infinite media. J. Eng. Mech. ASCE 95, 859–877 (1969)

    Google Scholar 

  24. Hisada, Y.: An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths. Bull. Seismol. Soc. Am. 84, 1456–1472 (1994)

    Google Scholar 

  25. Kristeková, M., Kristek, J., Moczo, P., Day, S.M.: Misfit criteria for quantitative comparison of seismograms. Bull. Seismol. Soc. Am. 96, 1836–1850 (2006)

    Article  Google Scholar 

  26. Japan Nuclear Energy Safety Organization: Working report on stochastic estimation for earthquake ground motion. JNES/SAE05–048 (2005)

    Google Scholar 

  27. Ma, S., Archuleta, R.J., Morgan, T.: Effects of large-scale surface topography on ground motions, as demonstrated by a study of the San Gabriel Mountains, Los Angeles, California. Bull. Seismol. Soc. Am. 97, 2066–2079 (2007)

    Article  Google Scholar 

  28. Somerville, P., Collins, N., Abrahamson, N., Graves, R., Saikia, C.: Ground Motion Attenuation Relations for the Central and Eastern United States. Final Report, 30 June 2001 [Online]. http://www.earthquake.usgs.gov/hazards/products/conterminous/2008/\99HQGR0098.pdf

  29. Second Report of the Nankai Trough Large Earthquake Model Committee, Cabinet Office, Government of Japan, 28 August 2012 [Online]. http://www.bousai.go.jp/jishin/nankai/model/index.html

  30. Disaster Assessment of Tokyo Due to Large Earthquakes Such as the Nankai Trough Earthquake, Tokyo Metropolitan Government, 14 May 2013 [Online]. http://www.bousai.metro.tokyo.jp/taisaku/1000902/1000402.html

  31. Tiankai, T., Hongfeng, Y., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Kwan-Liu, M., O’Hallaron, D.R.: From mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC ’06). ACM, New York, NY (2006), Article 91. doi:10.1145/1188455.1188551

    Google Scholar 

  32. Yifeng Cui, C., Olsen K.B., Jordan, T.H., Lee, K., Zhou, J., Small, P., Roten, D., Ely, G., Panda, D.K., Chourasia, A., Levesque, J., Day, S.M., Maechling, P.: Scalable earthquake simulation on petascale supercomputers. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’10), pp. 1–20. IEEE Computer Society, Washington, DC (2010). doi:10.1109/SC.2010.45. http://www.dx.doi.org/10.1109/SC.2010.45

  33. Rietmann, M., Messmer, P., Nissen-Meyer, T., Peter, D., Basini, P., Komatitsch, D., Schenk, O., Tromp, J., Boschi, L., Giardini, D.: Forward and adjoint simulations of seismic wave propagation on emerging large-scale GPU architectures. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC ’12), 11 pp. IEEE Computer Society Press, Los Alamitos, CA (2012), Article 38

    Google Scholar 

  34. Cui, Y., Poyraz, E., Olsen, K.B., Zhou, J., Withers, K., Callaghan, S., Larkin, J., Guest, C., Choi, D., Chourasia, A., Shi, Z., Day, S.M., Maechling, P.J., Jordan, T.H.: Hysics-based seismic hazard analysis on petascale heterogeneous supercomputers. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, (SC’13), 12 pp. IEEE Computer Society Press, New York, NY (2013), Article 70

    Google Scholar 

  35. Hori, M., Ichimura, T.: Current state of integrated earthquake simulation for earthquake hazard and disaster. J. Seismol. 12(2), 307–321 (2008). doi:10.1007/s10950-007-9083-x

    Article  Google Scholar 

  36. Wijerathne, M.L.L., Hori, M., Kabeyazawa, T., Ichimura, T.: Strengthening of parallel computation performance of integrated earthquake simulation. J. Comput. Civil Eng. 27, 570–573 (2013)

    Article  Google Scholar 

  37. Fujita, K., Ichimura, T., Hori, M., Wijerathne, M.L.L., Tanaka, S.: Basic study on high resolution seismic disaster estimation of cities under multiple earthquake hazard scenarios with high performance computing. J. Jpn. Soc. Civil Eng. Ser. A2 (Appl. Mech.) 69(2), I_415-I_424 (2013) (in Japanese with English abstract)

    Google Scholar 

  38. Liang, J., Sun, S.: Site effects on seismic behavior of pipelines: a review. J. Pressure Vessel Technol. (Am. Soc. Mech. Eng.) 122, 469–475 (2000)

    Google Scholar 

  39. Taborda, R., Bielak, J.: Large-scale earthquake simulation: computational seismology and complex engineering systems. Comput. Sci. Eng. 13, 14–27 (2011)

    Article  Google Scholar 

  40. Taborda, R., Bielak, J., Restrepo, D.: Earthquake ground-motion simulation including nonlinear soil effects under idealized conditions with application to two case studies. Seismol. Res. Lett. 83(6), 1047–1060 (2012)

    Article  Google Scholar 

  41. Ichimura, T., Fujita, K., Hori, M., Sakanoue, T., Hamanaka, R.: Three-dimensional nonlinear seismic ground response analysis of local site effects for estimating seismic behavior of buried pipelines. J. Pressure Vessel Technol. (Am. Soc. Mech. Eng.) 136, 041702 (2014)

    Google Scholar 

  42. Miyazaki, H., Kusano, Y., Shinjou, N., Shoji, F., Yokokawa, M., Watanabe, T.: Overview of the K computer system. FUJITSU Sci. Tech. J. 48(3), 302–309 (2012)

    Google Scholar 

  43. Idriss, I.M., Singh, R.D., Dobry, R.: Nonlinear behavior of soft clays during cyclic loading. J. Geotech. Eng. Div. 104, 1427–1447 (1978)

    Google Scholar 

  44. Masing, G.: Eigenspannungen und verfestigung beim messing. In: Proceedings of the 2nd International Congress of Applied Mechanics, pp. 332–335 (1926) (in German)

    Google Scholar 

  45. Akiba, H., Ohyama, T., Shibata, Y., Yuyama, K., Katai, Y., Takeuchi, R., Hoshino, T., Yoshimura, S., Noguchi, H., Gupta, M., Gunnels, J., Austel, V., Sabharwal, Y., Garg, R., Kato, S., Kawakami, T., Todokoro, S., Ikeda, J.: Large scale drop impact analysis of mobile phone using ADVC on Blue Gene/L. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC ’06), Article 46. ACM, New York, NY (2006). doi:10.1145/1188455.1188503

    Google Scholar 

  46. Ogino, M., Shioya, R., Kanayama, H.: An inexact balancing preconditioner for large-scale structural analysis. J. Comput. Sci. Technol. 2(1), 150–161 (2008)

    Article  Google Scholar 

  47. Kawai, H., Ogino, M., Shioya, R., Yoshimura, S.: Large-scale elast-plastic analysis using domain decomposition method optimized for multi-core CPU architecture. Key Eng. Mater. 462–463, 605–610 (2011)

    Article  Google Scholar 

  48. Mandel, J.: Balancing domain decomposition. Commun. Numer. Methods Eng. 9(3), 233–241 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  49. Earth Simulator (ES) (2014). http://www.jamstec.go.jp/es/en/es1/index.html

  50. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  51. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Non stiff Problems, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  52. Golub, G.H., Ye, Q.: Inexact conjugate gradient method with inner-outer iteration. SIAM J. Sci. Comput. 21(4), 1305–1320 (1997)

    Article  MathSciNet  Google Scholar 

  53. Winget, J.M., Hughes, T.J.R.: Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies. Comput. Methods Appl. Mech. Eng. 52, 711–815 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  54. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics, 6th edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  55. Ichimura, T., Hori, M., Bielak, J.: A Hybrid multiresolution meshing technique for finite element three-dimensional earthquake ground motion modeling in basins including topography. Geophys. J. Int. 177, 1221–1232 (2009)

    Article  Google Scholar 

  56. METIS 5.1.0 (2014). http://www.glaros.dtc.umn.edu/gkhome/metis/metis/overview

  57. vSMP Foundation, ScaleMP Inc. (2014). http://www.scalemp.com/products/vsmp-foundation/

  58. Ajima, Y., Inoue, T., Hiramoto, S., Shimizu, T.: Tofu: interconnect for the K computer. FUJITSU Sci. Tech. J. 48(3), 280–285 (2012)

    Google Scholar 

  59. OpenMPI (2014). http://www.open-mpi.org/

  60. MPI: A Message-Passing Interface Standard, Version 2.1 (2014). http://www.mpi-forum.org/docs/mpi21-report.pdf

  61. Strong Ground Motion of the Southern Hyogo Prefecture Earthquake in 1995 Observed at Kobe JMA Observatory, Japan Meteorological Agency (2014). http://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/hyogo_nanbu/dat/H1171931.csv

  62. Stampede at Texas Advanced Computing Center, The University of Texas at Austin (2014). https://www.tacc.utexas.edu/resources/hpc/stampede-technical

  63. 5m Mesh Digital Elevation Map, Tokyo Ward Area, Geospatial Information Authority of Japan (2014). http://www.gsi.go.jp/MAP/CD-ROM/dem5m/index.htm

  64. National Digital Soil Map, The Japanese Geotechincal Society (2014). http://www.denshi-jiban.jp/

  65. Strong-Motion Seismograph Networks (K-NET, KiK-net), National Research Institute for Earth Science and Disaster Prevention (2014). http://www.kyoshin.bosai.go.jp/

  66. Housner, G.W.: Spectrum intensities of strong-motion earthquakes. In: Symposium on Earthquakes and Blast Effects on Structures, Los Angeles, CA (1952)

    Google Scholar 

  67. Homma, S., Fujita, K., Ichimura, T., Hori, M., Citak, S., Hori, T.: A physics-based Monte Carlo earthquake disaster simulation accounting for uncertainty in building structure parameters. In: The International Conference on Computational Science 29, 855–865 (2014). doi:10.1016/j.procs.2014.05.077

    Google Scholar 

  68. Ichimura, T., Agata, R., Hori, T., Hirahara, K., Hori, M.: Fast numerical simulation of crustal deformation using a three-dimensional high-fidelity model. Geophys. J. Int. 195, 1730–1744 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneo Hori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hori, M., Ichimura, T., Fujita, K. (2016). Simulation of Seismic Wave Propagation and Amplification. In: Yoshimura, S., Hori, M., Ohsaki, M. (eds) High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21048-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21048-3_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21047-6

  • Online ISBN: 978-3-319-21048-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics