Skip to main content

Experimental Observation of Intrinsic Localized Modes in Germanium

  • Chapter
  • First Online:
Quodons in Mica

Abstract

Deep level transient spectroscopy shows that defects created by alpha irradiation of germanium are annealed by low energy plasma ions up to a depth of several thousand lattice units. The plasma ions have energies of 2–8 eV and therefore can deliver energies of the order of a few eV to the germanium atoms. The most abundant defect is identified as the E-center, a complex of the dopant antimony and a vacancy with an annealing energy of 1.3 eV as determined by our measurements. The inductively coupled plasma has a very low density and a very low flux of ions. This implies that the ion impacts are almost isolated both in time and at the surface of the semiconductor. We conclude that energy of the order of an eV is able to travel a large distance in germanium in a localized way and is delivered to the defects effectively. The most likely candidates are vibrational nonlinear wave packets known as intrinsic localized modes, which exist for a limited range of energies. This property is coherent with the fact that more energetic ions are less efficient at producing the annealing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NEMI 2012: 1st International Workshop: Nonlinear effects in materials under irradiation, March 12–17, 2012, Pretoria, South Africa. P. Selyshev, chairman.

References

  1. Archilla, J.F.R., Coelho, S.M.M., Auret, F.D., Dubinko, V.I., Hizhnyakov, V.: Long range annealing of defects in germanium by low energy plasma ions. Physica D 297, 56–61 (2015)

    Article  Google Scholar 

  2. Ashcroft, N.W., Mermin, N.D.: Solid State physics. Saunders College Publishing, Philadelphia (1976)

    Google Scholar 

  3. Berger, L.I.: Semiconductor Materials. CRC Press, London (1996)

    Google Scholar 

  4. Coelho, S.M.M., Archilla, J.F.R., Auret, F.D., Nel, J.M.: The origin of defects induced in ultra-pure germanium by electron beam deposition. In: J.F.R. Archilla, N. Jiménez, V.J. Sánchez-Morcillo, L.M. García-Raffi (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, pp. 363–380. Springer, Berlin (2015)

    Google Scholar 

  5. Coelho, S.M.M., Auret, F.D., Janse van Rensburg, P.J., Nel, J.: Electrical characterization of defects introduced in n-Ge during electron beam deposition or exposure. J. Appl. Phys. 114(17), 173708 (2013)

    Google Scholar 

  6. Dimitrijev, S.: Irreversible event-based model for thermal emission of electrons from isolated traps. J. Appl. Phys. 105, 103706 (2009)

    Google Scholar 

  7. Dove, M.T.: Introduction to Lattice Dynamics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  8. Dubinko, V.I., Archilla, J.F.R., Dmitriev, S.V., Hizhnyakov, V.: Rate theory of acceleration of defect annealing driven by discrete breathers. In: J.F.R. Archilla, N. Jiménez, V.J. Sánchez-Morcillo, L.M. García-Raffi (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, pp. 381–398. Springer, Berlin (2015)

    Google Scholar 

  9. Dubinko, V.I., Dubinko, A.V.: Modification of reaction rates under irradiation of crystalline solids: contribution from intrinsic localized modes. Nucl. Instrum. Meth. B 303, 133–135 (2013)

    Article  Google Scholar 

  10. Dubinko, V.I., Selyshchev, P.A., Archilla, J.F.R.: Reaction-rate theory with account of the crystal anharmonicity. Phys. Rev. E 83, 041124 (2011)

    Google Scholar 

  11. Fage-Pedersen, J., Larsen, A.N.: Irradiation-induced defects in Ge studied by transient spectroscopies. Phys. Rev. B 62, 10116 (2000)

    Google Scholar 

  12. Holmström, E., Nordlund, K., Kuronen, A.: Threshold defect production in germanium determined by density functional theory molecular dynamics simulations. Phys. Scr. 81, 035601 (2010)

    Google Scholar 

  13. Karamitaheri, H., Neophytou, N., Kosina, H.: Ballistic phonon transport in ultra-thin silicon layers: effects of confinement and orientation. J. Appl. Phys. 113(20), 204305 (2013)

    Google Scholar 

  14. Kolkovsky, V., Petersen, M.C., Larsen, A.N.: Alpha-particle irradiation-induced defects in n-type germanium. Appl. Phys. Lett. 90(11), 112110 (2007)

    Google Scholar 

  15. Lacroix, D., Joulain, K., Lemonnier, D.: Monte carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72, 064305 (2005)

    Google Scholar 

  16. Lang, D.V.: Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023–3032 (1974)

    Article  Google Scholar 

  17. Lide, D.R. (ed.): Handbook of Chemistry and Physics, 90th edn. CRC Press, Boca Raton (2010)

    Google Scholar 

  18. Markevich, V.P., Peakera, A.R., Litvinov, V.V., Emtsev, V.V., Murin, L.I.: Electronic properties of antimony-vacancy complex in Ge crystals. J. Appl. Phys. 95, 4078 (2004)

    Article  Google Scholar 

  19. Northrop, G.A., Wolfe, J.P.: Ballistic phonon imaging in germanium. Phys. Rev. B 22, 6196–6212 (1980)

    Article  Google Scholar 

  20. Nyamhere, C.: Characterization of process and radiation induced defects in Si and Ge using conventional deep level transient spectroscopy (DLTS) and laplace-DLTS. Ph.D. thesis, University of Pretoria. http://upetd.up.ac.za/thesis/available/etd-02022010-134937/ (2009). Accessed 14 March 2015

  21. Roro, K., Janse van Rensburg, P., Auret, F., Coelho, S.M.M.: Effect of alpha-particle irradiation on the electrical properties of n-type Ge. Physica B 404(22), 4496–4498 (2009)

    Google Scholar 

  22. Schroder, D.K.: Semiconductor Material and Device Characterization, 3rd edn. John wiley, New Jersey (2006)

    Google Scholar 

  23. Tahini, H., Chroneos, A., Grimes, R.W., Schwingenschlo, U., Bracht, H.: Diffusion of E centers in germanium predicted using GGA+U approach. Appl. Phys. Lett. 99, 072112 (2011)

    Google Scholar 

  24. Voulgarakis, N.K., Hadjisavvas, S., Kelires, P.C., Tsironis, G.P.: Computational investigation of intrinsic localization in crystalline Si. Phys. Rev. B 69, 113201(1–4) (2004)

    Google Scholar 

  25. Wei, S., Chou, M.Y.: Phonon dispersion of silicon and germanium from first principles calculations. Phys. Rev. B 50, 2221 (1994)

    Article  Google Scholar 

  26. Wikipedia: Sine-gordon equation. http://en.wikipedia.org/wiki/Sine-Gordon_equation (2015). Accessed 6 Apr 2015

Download references

Acknowledgments

The authors were funded by MICINN, project FIS2008-04848; the South African National Research Foundation and the European Regional Development Fund, Centre of Excellence Mesosystems: Theory and Applications. JFRA and VD acknowledges the Physics Institute in Tartu for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. R. Archilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Archilla, J.F.R., Coelho, S.M.M., Auret, F.D., Nyamhere, C., Dubinko, V.I., Hizhnyakov, V. (2015). Experimental Observation of Intrinsic Localized Modes in Germanium. In: Archilla, J., Jiménez, N., Sánchez-Morcillo, V., García-Raffi, L. (eds) Quodons in Mica. Springer Series in Materials Science, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-21045-2_14

Download citation

Publish with us

Policies and ethics