Individual Influence Maximization via Link Recommendation

  • Guowei Ma
  • Qi LiuEmail author
  • Enhong Chen
  • Biao Xiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9098)


Recent years have witnessed the increasing interest in exploiting social influence in social networks for many applications, such as viral marketing. Most of the existing research focused on identifying a subset of influential individuals with the maximum influence spread. However, in the real-world scenarios, many individuals also care about the influence of herself and want to improve it. In this paper, we consider such a problem that maximizing a target individual’s influence by recommending new links. Specifically, if a given individual/node makes new links with our recommended nodes then she will get the maximum influence gain. Along this line, we formulate this link recommendation problem as an optimization problem and propose the corresponding objective function. As it is intractable to obtain the optimal solution, we propose greedy algorithms with a performance guarantee by exploiting the submodular property. Furthermore, we study the optimization problem under a specific influence propagation model (i.e., Linear model) and propose a much faster algorithm (uBound), which can handle large scale networks without sacrificing accuracy. Finally, the experimental results validate the effectiveness and efficiency of our proposed algorithms.


Social Network Target Node Large Scale Network Candidate Node Recommendation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: KDD (2002)Google Scholar
  2. 2.
    Chen, W., Lakshmanan, L.V., Castillo, C.: Information and influence propagation in social networks. Synthesis Lectures on Data Management 5(4), 1–177 (2013)CrossRefGoogle Scholar
  3. 3.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing letters 12(3), 211–223 (2001)CrossRefGoogle Scholar
  4. 4.
    Granovetter, M.: Threshold models of collective behavior. American journal of sociology, 1420–1443 (1978)Google Scholar
  5. 5.
    Aggarwal, C., Khan, A., Yan, X.: On flow authority discovery in social networks. In: SDM, pp. 522–533 (2011)Google Scholar
  6. 6.
    Xiang, B., Liu, Q., Chen, E., Xiong, H., Zheng, Y., Yang, Y.: Pagerank with priors: an influence propagation perspective. In: IJCAI (2013)Google Scholar
  7. 7.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: WSDM (2010)Google Scholar
  8. 8.
    Saito, K., Ohara, K., Yamagishi, Y., Kimura, M., Motoda, H.: Learning diffusion probability based on node attributes in social networks. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 153–162. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    He, X., Kempe, D.: Stability of influence maximization. In: SIGKDD, pp. 1256–1265 (2014)Google Scholar
  10. 10.
    Eftekhar, M., Ganjali, Y., Koudas, N.: Information cascade at group scale. In: KDD (2013)Google Scholar
  11. 11.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: KDD (2007)Google Scholar
  12. 12.
    Chaoji, V., Ranu, S., Rastogi, R., Bhatt, R.: Recommendations to boost content spread in social networks. In: WWW (2012)Google Scholar
  13. 13.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD (2001)Google Scholar
  14. 14.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD (2003)Google Scholar
  15. 15.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD (2010)Google Scholar
  16. 16.
    Kim, J., Kim, S.K., Yu, H.: Scalable and parallelizable processing of influence maximization for large-scale social networks? In: ICDE, pp. 266–277. IEEE (2013)Google Scholar
  17. 17.
    Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity meets practical efficiency. In: SIGMOD, pp. 75–86. ACM (2014)Google Scholar
  18. 18.
    Guo, J., Zhang, P., Zhou, C., Cao, Y., Guo, L.: Personalized influence maximization on social networks. In: CIKM (2013)Google Scholar
  19. 19.
  20. 20.
    Chen, J., Geyer, W., Dugan, C., Muller, M., Guy, I.: Make new friends, but keep the old: recommending people on social networking sites. In: SIGCHI (2009)Google Scholar
  21. 21.
    Guy, I., Ronen, I., Wilcox, E.: Do you know?: recommending people to invite into your social network. In: IUI (2009)Google Scholar
  22. 22.
    Tian, Y., He, Q., Zhao, Q., Liu, X., Lee, W.c.: Boosting social network connectivity with link revival. In: CIKM (2010)Google Scholar
  23. 23.
    Saito, K., Kimura, M., Ohara, K., Motoda, H.: Which targets to contact first to maximize influence over social network. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 359–367. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    Goyal, A., Lakshmanan, L.V.S.: Recmax: exploiting recommender systems for fun and profit. In: KDD (2012)Google Scholar
  25. 25.
    Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Krause, A., Golovin, D.: Submodular function maximization. Tractability: Practical Approaches to Hard Problems 3, 19 (2012)Google Scholar
  27. 27.
    Yang, Y., Chen, E., Liu, Q., Xiang, B., Xu, T., Shad, S.A.: On approximation of real-world influence spread. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 548–564. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  28. 28.
    Liu, Q., Xiang, B., Zhang, L., Chen, E., Tan, C., Chen, J.: Linear computation for independent social influence. In: ICDM (2013)Google Scholar
  29. 29.
    Tong, H., Faloutsos, C., Pan, J.Y.: Random walk with restart: fast solutions and applications. In: KIS (2008)Google Scholar
  30. 30.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web (1999)Google Scholar
  31. 31.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.: A data-based approach to social influence maximization. Proceedings of the VLDB Endowment 5(1), 73–84 (2011)CrossRefGoogle Scholar
  32. 32.
    Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: KDD, pp. 7–15. ACM (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiChina
  2. 2.MicrosoftSearch Technology Center Asia (STCA)BeijingChina

Personalised recommendations