Advertisement

Location Semantics Protection Based on Bayesian Inference

  • Zhengang WuEmail author
  • Zhong Chen
  • Jiawei Zhu
  • Huiping Sun
  • Zhi Guan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9098)

Abstract

In mobile Internet, popular Location-Based Services (LBSs) recommend Point-of-Interest (POI) data according to physical positions of smartphone users. However, untrusted LBS providers can violate location privacy by analyzing user requests semantically. Therefore, this paper aims at protecting user privacy in location-based applications by evaluating disclosure risks on sensitive location semantics. First, we introduce a novel method to model location semantics for user privacy using Bayesian inference and demonstrate details of computing the semantic privacy metric. Next, we design a cloaking region construction algorithm against the leakage of sensitive location semantics. Finally, a series of experiments evaluate this solution’s performance to show its availability.

Keywords

Location privacy protection Location semantics Bayesian inference Spatial cloaking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, B., Oh, J., Yu, H., Kim, J.: Protecting location privacy using location semantics. In: Apté, C., Ghosh, J., Smyth, P. (eds.) KDD, pp. 1289–1297. ACM (2011)Google Scholar
  2. 2.
    Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: query processing for location services without compromising privacy. In: Dayal, U., Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha, S.K., Kim, Y.K. (eds.) VLDB, pp. 763–774. ACM (2006)Google Scholar
  3. 3.
    Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. In: Liu, L., Reuter, A., Whang, K.Y., Zhang, J. (eds.) ICDE, p. 24. IEEE Computer Society (2006)Google Scholar
  5. 5.
    Mokbel, M.F., Alarabi, L., Bao, J., Eldawy, A., Magdy, A., Sarwat, M., Waytas, E., Yackel, S.: MNTG: an extensible web-based traffic generator. In: Nascimento, M.A., Sellis, T., Cheng, R., Sander, J., Zheng, Y., Kriegel, H.-P., Renz, M., Sengstock, C. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 38–55. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 571–588 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: Chirkova, R., Dogac, A., Özsu, M.T., Sellis, T.K. (eds.) ICDE, pp. 106–115. IEEE (2007)Google Scholar
  8. 8.
    Wernke, M., Skvortsov, P., Dürr, F., Rothermel, K.: A classification of location privacy attacks and approaches. Personal and Ubiquitous Computing 18(1), 163–175 (2014)CrossRefGoogle Scholar
  9. 9.
    Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest neighbor search with strong location privacy. PVLDB 3(1), 619–629 (2010)Google Scholar
  10. 10.
    Paulet, R., Kaosar, M.G., Yi, X., Bertino, E.: Privacy-preserving and content-protecting location based queries. IEEE Trans. Knowl. Data Eng. 26(5), 1200–1210 (2014)CrossRefGoogle Scholar
  11. 11.
    Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Siewiorek, D.P. (ed.) MobiSys. USENIX (2003)Google Scholar
  12. 12.
    Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: Architecture and algorithms. IEEE Trans. Mob. Comput. 7(1), 1–18 (2008)CrossRefGoogle Scholar
  13. 13.
    Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based identity inference in anonymous spatial queries. IEEE Trans. Knowl. Data Eng. 19(12), 1719–1733 (2007)CrossRefGoogle Scholar
  14. 14.
    Shokri, R., Theodorakopoulos, G., Boudec, J.Y.L., Hubaux, J.P.: Quantifying location privacy. In: IEEE Symposium on Security and Privacy, pp. 247–262. IEEE Computer Society (2011)Google Scholar
  15. 15.
    Parent, C., Spaccapietra, S., Renso, C., Andrienko, G.L., Andrienko, N.V., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., de Macêdo, J.A.F., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic trajectories modeling and analysis. ACM Comput. Surv. 45(4), 42 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zhengang Wu
    • 1
    • 2
    Email author
  • Zhong Chen
    • 1
  • Jiawei Zhu
    • 1
  • Huiping Sun
    • 1
  • Zhi Guan
    • 1
  1. 1.Institute of Software, School of EECS, MoE Key Lab of High Confidence Software Technologies (PKU), MoE Key Lab of Network and Software Security Assurance (PKU)Peking University (PKU)BeijingChina
  2. 2.China Academy of Information and Communications TechnologyBeijingChina

Personalised recommendations